| 研究生: |
郭子正 Tzu-Cheng Kuo |
|---|---|
| 論文名稱: |
SCARA 機器手臂運作於3D最佳化路徑之研究 The study on SCARA robot arm for working on 3D route optimization |
| 指導教授: |
王文俊
Wen-June Wang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | SCARA機器手臂 、影像辨識 、深度影像處理 、3D路徑規劃 、TSP旅行者問題 、PSO粒子群演算法 、可視法避障 、座標轉換 |
| 外文關鍵詞: | SCARA, Image recognition, Depth image processing, 3D path planning, TSP, PSO, Visibility graph, Coordinate transformation |
| 相關次數: | 點閱:27 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
機器手臂在工業界的應用非常廣泛,一般工廠的機器手臂運作模式為: 工程師預先使用電腦設定目標點及運作路徑,則手臂只能於預設好路徑中移動。而在實際使用中往往會遇到多目標點的情況,在這種情況下原先已由工程師設定好的移動順序則不一定是最好的。因此為了提高生產效率,需減少手臂每次移動的時間成本。
以工業界中規劃鎖螺絲的路徑為範例,每一個螺絲孔即為一個目標點,由於每個螺絲孔均需鑽入螺絲,都需經過螺絲孔一次,這問題就是著名的旅行者問題(Travelling salesman problem, TSP)。當加工物件為立體的情況時,螺絲孔位置的分布會有高度不一的問題,造成目標點與目標點之間可能遇到被障礙物隔開的情況。本研究就以規劃SCARA機器手臂在高低不平的不規則加工物上鎖多個螺絲之路徑作為示範實驗。
在本研究中使用深度攝影機Kinect建立加工物件的模型,並使用影像處理偵測螺絲孔的位置。遇到障礙物的情況下,使用基於可視法的3D避障演算法來避障。已知的一般可視法只適用於2D平面的避障問題,為了在3D空間下也能使用可視法,提出了一個新增節點的機制,將可視法轉換到3D空間中。此避障演算法是將目標點與目標點之間的距離成本計算出來,接著將每點間的移動成本帶入粒子群演算法(Particle Swarm Optimization,PSO)與2-Opt演算法來求解TSP問題,計算出最優路徑。最後將影像座標轉換為手臂座標,讓機器手臂精準抵達所有目標點。
In the modern community, various robot arms are widely used in different industrial areas. In general, the engineer manually set target point and pathway via the computer in advanced so that the robot arm can strictly move along with the preset path. If there exists a problem of visiting multiple targets, the preset path cannot be ensured that is the best arrangement. In order to improve the production efficiency, the moving cost of the robot arm needs to be reduced to carry out our study purpose.
In this paper, we will present an experiment of locking screws to clearly introduce our proposed algorithm. Each point needs to be passed only once for the overall experimental procedure. Obviously, this is a typical travelling salesman problem (TSP). To be honest, the previous algorithms can only solve some problems in 2D space. However, this study is applied to cope with the issue of optimal path of locking screws in 3D space by the Selective Compliance Assembly Robot Arm (SCARA).
The heights of screw holes are different when the detected object is 3D structure. Then, it is observed that the path between two points may be obstructed by certain obstacles to seriously disturb the normal work of a robot arm. In order to solve this problem, Kinect is used to build the 3D model of the object and simultaneously detect screw holes based on the image processing method. To avoid the robot arm hitting the obstacle on the path, we have to utilize avoiding algorithm to stop this situation appearance. The avoiding algorithm based on the visibility graph algorithm has been proposed in this study in order to let the general visibility graph algorithm transfer to 3D space. Namely, we propose a strategy to add new nodes so that it can help us easily calculate the moving cost of each point. Substituting the moving cost into TSP to calculate the optimal path where the TSP problem can be solved by the Particle Swarm Optimization (PSO) and 2-Opt algorithms. Finally, transferring the image coordinate to SCARA coordinate to let the robot arm complete the whole task.
[1] L. Petrescu, A. Morar, F. Moldoveanu, and A. Moldoveanu, “Kinect depth inpainting in real time,” in proc. of 39th International Conference on Telecommunications and Signal Processing, Jun. 2016, pp. 697-700.
[2] S. Hong, A. Dorado, G. Saavedra, J. C. Barreiro, and M. Martinez-Corral, “Three-dimensional integral-imaging display from calibrated and depth-hole filtered kinect Information,” Journal of Display Technology, Vol. 12, No. 11, Nov. 2016, pp. 1301-1308.
[3] J. J. Hernandez-Lopez, “Detecting objects using color and depth segmentation with kinect sensor,” in Proc. of the 2012 Iberoamerican Conference on Electronics Engineering and Computer Science, Vol. 3, Mexico, May 2012, pp. 196-204.
[4] S. S. A. Ali, M. Bennamoun, and F. Boussaid, "A novel algorithm for efficient depth segmentation using low resolution (kinect) images." in Proc. of 2015 IEEE Int. Conf. on Industrial Electronics and Applications (ICIEA), Auckland, New Zealand, Jun. 2015, pp. 603 – 607.
[5] J. Bai, J. Yang, X. Ye, and C. Hou, “Depth refinement for binocular kinect RGB-D cameras,” in Proc. of Visual Communications and Image Processing (VCIP), 2016, pp. 1-4.
[6] J. M. Lee, B. S. Park, Y. S. Lee, J. S. Ahn, S. H. Lee, S. J. Lim, and C. S. Han, “The development of the robot manipulator for an intelligent service robot,” in Proc. of SICE-ICASE International Joint Conference, Oct. 2006, pp. 282-287.
[7] S. D Wickramaratna, A. S. Udage, R. T. Jayasekara, D. A. Kariyapperuma, W. S. P. Abeysiriwardhana, and A. H. S. Abeykoon, “ Field based navigation for 3D obstacle avoidance,” in Proc. of 2016 Moratuwa Engineering Research Conference, Apr. 2016, pp. 391-396.
[8] T. Jianhao, W. Chu , W. Yaonan, C. Yuanli, Z. Yiwei, and W. Yuanyuan, “Three-dimensional path planning based on ant colony algorithm with potential field for rotary-wing flying robot,” in Proc. of the 2015 IEEE International Conference on Information and Automation Lijiang, China, Aug. 2015, pp. 2592-2597.
[9] H. Han-Pang and C. Shu-Yun, “Dynamic visibility graph for path planning, ”in Proc. of 2004 IEEElRSl International Conference on Intelligent Robots and Systems, Ssndai, Japan, Oct. 2004, pp. 2813-2818.
[10] C. Xia, L. Dong, T. Ting, “Path planning for UCAV in dynamic and uncertain environments based on focused D* algorithm,” in Proc. of 2011 Fourth International Symposium on Computational Intelligence and Design, Oct. 2011, pp. 55-58.
[11] N. Mohamadnejad and E. Masehian, “Path planning of nonholonomic flying robots using a new virtual obstacle method, ”in Proc. of the 3rd RSI International Conference on Robotics and Mechatronics, Tehran, Iran, Oct. 2015, pp. 612-617.
[12] K. Jiangl, .D. Seneviratne, and S.W. E. Earles, “Finding the 3D shortest path with visibility graph and minimum potential energy,” in Proc. of the 1993 IEEWSJ International Conference on Intelligent Robots and Systems, Yokohama, Japan, Jul. 1993, pp. 679-684.
[13] Q. Haisheng, Z. Shulun, H. Ling, and L. Jie, “A new ant colony algorithm based on dynamic local search for TSP,” in Proc. of 2015 Fifth International Conference on Communication Systems and Network Technologies, Apr. 2015, pp. 913-917.
[14] P. Sharma and M. Gupta, “TSP problem using modified ABC based on dynamically division of bees,” in Proc. of 2015 International Conference on Computing Communication Control and Automation, Feb. 2015, pp. 427-431.
[15] W. Elloumi, N. Baklouti, A. Abraham, and A. M. Alimi, “Hybridization of fuzzy PSO and fuzzy ACO applied to TSP,” in Proc. of 2013 13th International Conference on Hybrid Intelligent Systems, Dec. 2013, pp. 105-110.
[16] G. Ye and X. Rui, “An improved simulated annealing and genetic algorithm for TSP,” in Proc. of 2013 5th IEEE International Conference on Broadband Network & Multimedia Technology, Nov. 2013, pp. 6-9.
[17] S. A. Khan, S. Asghar, and S. Fong, “Modeling TSP with particle swarm optimization and genetic algorithm,” in Proc. of 2010 6th International Conference on Advanced Information Management and Service, Dec. 2010, pp. 455-459.
[18] S. Lin, “Computer solutions of the traveling salesman problem,” The Bell System Technology Journal, vol. 44, pp. 2245-2269, 1965.
[19] O. Khatib,“Real-time obstacle avoidance for manipulators and mobile robots,”in Proc. of 1985 IEEE International Conference on Robotics and Automation, Mar. 1985, pp. 500-505.
[20] J. Kennedy and R. Eberhart,“Particle swarm optimization,”in Proc. of 1995 IEEE International Conference on Neural Networks, Nov. 1995, pp. 1942-1948.
[21] 王亮達(王啟州教授指導),「使用PSO-GA 演算法運用於TSP 問題上做移動式機器人路徑最佳化」,南台科技大學電機工程研究所海外研習專班碩士學位論文,2011年7月。
[22] 李維平和張加憲,「改良粒子群演算法求解旅行銷售員問題」, 先進工程學刊,第六卷,第一期,第21-30頁,2011。
[23] 張靖、卓裕仁和藍宜祥,「改良型巢狀分割法應用於旅行推銷員問題之研究」,運輸計劃季刊,第34 卷,第4 期,第549-574頁,2005。
[24] 張旭梅和邱晗光,「基於k-中心點法的改進粒子群演算法在旅行問題中的應用」,計算機集成製造系統,第13 卷,第1 期,第99-104 頁,2007。
[25] 陳致元(王文俊教授指導),「SCARA機器手臂應用於螺絲與螺帽之自動分類」,國立中央大學電機研究所碩士論文,2016年6月。
[26] 楊政勳(林顯易教授指導),「機器人足球比賽之路徑規劃設計」,國立台北科技大學自動化科技研究所碩士學位論文,2012年7月。
[27] 王森,KINECT體感程式設計入門,碁峯資訊股份有限公司,2012年8月。
[28] 解析體感設備Kinect,2017年6月。
https://www.rs-online.com/designspark/content-699
[29] Opencv影像處理相關網站,2017年6月。
http://opencv.org/about.html
[30] Kinect深度影像與彩色影像對齊,2017年6月。
https://kheresy.wordpress.com/2011/01/21/combine_depth_and_image_from_kinect/
[31] 粒子群優化(維基百科),2017年6月。
https://zh.wikipedia.org/wiki/%E7%B2%92%E5%AD%90%E7%BE%A4%E4%BC%98%E5%8C%96
[32] 沃羅諾伊圖(維基百科),2017年6月。
https://zh.wikipedia.org/wiki/%E6%B2%83%E7%BD%97%E8%AF%BA%E4%BC%8A%E5%9B%BE
[33] 戴克斯特拉演算法(維基百科),2017年6月。
https://zh.wikipedia.org/wiki/%E6%88%B4%E5%85%8B%E6%96%AF%E7%89%B9%E6%8B%89%E7%AE%97%E6%B3%95
[34] 齊次坐標(維基百科),2017年6月。
https://zh.wikipedia.org/wiki/%E9%BD%90%E6%AC%A1%E5%9D%90%E6%A0%87
[35] 隨機抽樣一致(維基百科),2017年6月。
https://zh.wikipedia.org/wiki/%E9%9A%A8%E6%A9%9F%E6%8A%BD%E6%A8%A3%E4%B8%80%E8%87%B4
[36] 華碩官方網站,2017年6月。
https://www.asus.com/tw/
[37] Microsoft Kinect Sensor(Generation Robots),2017年6月。
https://www.generationrobots.com/en/401430-microsoft-kinect-sensor.html
[38] YAHOO購物中心(燈架),2017年6月。
https://tw.search.buy.yahoo.com/search/shopping/product?p=%E7%87%88%E6%9E%B6&qt=product&cid=0&clv=0&cid_path=
[39] 台達電(SCARA工業機器人),2017年6月。
http://www.deltaww.com/Products/CategoryListT1.aspx?CID=060601&PID=ALL&hl=zh-TW
[40] Potential field,2017年6月。
http://www.eng.buffalo.edu/~llee3/Thesis.html.bak
[41] Potential Field Methods,2017年6月。
http://kovan.ceng.metu.edu.tr/~asil/old/_1./wh2.html
[42] Overview of Motion Planning,2017年6月。
http://www.gamasutra.com/blogs/MattKlingensmith/20130907/199787/Overview_of_Motion_Planning.php