| 研究生: |
林珈琪 Chia-Chi LIN |
|---|---|
| 論文名稱: |
剪切力溶液製程應用於高效能有機薄膜電晶體:含硒碳鏈聯噻吩小分子半導體材料 Selenium-Alkyl Bithiophene(SeBT)-Based Small Molecular Semiconductors via Solution Sheared Method for High-Performance Organic Thin-Film Transistors |
| 指導教授: |
劉振良
Cheng-Liang Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 59 |
| 中文關鍵詞: | 溶液製程 、剪切力塗佈 、有機小分子半導體材料 、有機薄膜電晶體 |
| 外文關鍵詞: | organic small molecule semiconductor |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用溶液製程並透過剪切力塗佈法製作有機薄膜電晶體元件,主要研究於有機薄膜層,由於之前實驗室製作含硫碳鏈之p-type有機小分子材料SBT,有機薄膜元件電性達1.7 cm2V-1s-1。本研究將硒取代硫原子運用不同鍊長的含硒碳鏈之聯噻吩(selenylated bithiophene; SeBT)為核心,核心頭尾兩端接上三併環噻吩(2,6-di(dithieno[3,2-b;2’,3’-d]-thiophen-2yl; DDTT)為主軸,合成本研究使用得P-type有機小分子半導體材料DDTT-SeBT-C6、DDTT-SeBT-C10及DDTT-SeBT-C14。
隨著含硒碳鏈長的增加,載子遷移率從DDTT-SeBT-C6 0.09 cm2V-1s-1,增加至DDTT-SeBT-C10 0.06 cm2V-1s-1,再增加至DDTT-SeBT-C14 4.01 cm2V-1s-1,並利用光學顯微鏡、原子力顯微鏡等儀器分析其表面形貌。其中,DDTT-SeBT-C6薄膜呈現不連續狀,DDTT-SeBT-C10從GIXRD可發現結晶性不佳,所以造成電性不佳,反之,DDTT-SeBT-C14表面形貌呈現連續性且結晶性佳,得到優異的電性表現載子遷移率4.01 cm2V-1s-1,我們利用單晶可知,當側鍊較長時,可改善主軸扭轉角使分子呈平面性提高載子遷移率。
This study research new small molecule semiconductors via solution shearing manufacture organic thin film transistors. Owing to the previous work thio-alkyl substituted bithiophene (SBT), the organic thin film transistor electrical properties is 1.7 cm2V-1s-1. The series of new small molecules is selenylated bithiophene with different alkyl side chains. Then, add 2,6-di(dithieno[3,2-b;2’,3’-d]-thiophen-2yl (DDTT) to become the main backbone on the both side of the core.
As the carbon length increase, the carrier mobility increases from DDTT-SeBT-C6 0.09 cm2V-1s-1 to DDTT-SeBT-C14 4.01 cm2V-1s-1. The surface morphology was analyzed by optical microscopy, atomic force microscopy, grazing incidence x-ray diffraction, UV-vis spectrophotometer. In these three molecules, the morphology of DDTT-SeBT-C6 is discontinuity. The crystallinity of DDTT-SeBT-C10 is worse. That the reason why they get the poor electrical properties. However, the morphology of DDTT-SeBT-C14 is continuity and the high crystallinity. When the side length increase, the torsion angle can be improved to make the backbone planar to improve the carrier mobility.
1. Reese, C.; Roberts, M.; Ling, M.-m.; Bao, Z., Organic thin film transistors. Materials today 2004, 7, 20-27.
2. Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D., Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. Chem. Rev. 2011, 112, 2208-2267.
3. Guo, X.; Facchetti, A.; Marks, T. J., Imide-and amide-functionalized polymer semiconductors. Chem. Rev. 2014, 114, 8943-9021.
4. Shirakawa, H.; Louis, E. J.; MacDiarmid, A. G.; Chiang, C. K.; Heeger, A. J., Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. J. Chem. Soc., Chem. Commun. 1977, 578-580.
5. Ebisawa, F.; Kurokawa, T.; Nara, S., Electrical properties of polyacetylene/polysiloxane interface. Journal of applied physics 1983, 54, 3255-3259.
6. Yuan, Y.; Giri, G.; Ayzner, A. L.; Zoombelt, A. P.; Mannsfeld, S. C.; Chen, J.; Nordlund, D.; Toney, M. F.; Huang, J.; Bao, Z., Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nature communications 2014, 5, 3005.
7. Ward, J. W.; Lamport, Z. A.; Jurchescu, O. D., Versatile organic transistors by solution processing. ChemPhysChem 2015, 16, 1118-1132.
8. Guo, Y.; Yu, G.; Liu, Y., Functional organic field‐effect transistors. Adv. Mat. 2010, 22, 4427-4447.
9. Klauk, H., Organic thin-film transistors. Chem. Soc. Rev. 2010, 39, 2643-2666.
10. Dong, H.; Fu, X.; Liu, J.; Wang, Z.; Hu, W., 25th Anniversary Article: Key Points for High‐Mobility Organic Field‐Effect Transistors. Adv. Mat. 2013, 25, 6158-6183.
11. Di, C.-A.; Liu, Y.; Yu, G.; Zhu, D., Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc. Chem. Res. 2009, 42, 1573-1583.
12. Takimiya, K.; Osaka, I.; Nakano, M., π-Building blocks for organic electronics: revaluation of “inductive” and “resonance” effects of π-electron deficient units. Chem. Mater. 2013, 26, 587-593.
13. Dimitrakopoulos, C. D.; Malenfant, P. R., Organic thin film transistors for large area electronics. Adv. Mat. 2002, 14, 99-117.
14. Tan, H.; Mathews, N.; Cahyadi, T.; Zhu, F.; Mhaisalkar, S., The effect of dielectric constant on device mobilities of high-performance, flexible organic field effect transistors. Appl. Phys. Lett. 2009, 94, 177.
15. Dong, H.; Wang, C.; Hu, W., High performance organic semiconductors for field-effect transistors. Chem. Commun. 2010, 46, 5211-5222.
16. Giri, G.; Verploegen, E.; Mannsfeld, S. C.; Atahan-Evrenk, S.; Kim, D. H.; Lee, S. Y.; Becerril, H. A.; Aspuru-Guzik, A.; Toney, M. F.; Bao, Z., Tuning charge transport in solution-sheared organic semiconductors using lattice strain. Nature 2011, 480, 504.
17. Ebata, H.; Izawa, T.; Miyazaki, E.; Takimiya, K.; Ikeda, M.; Kuwabara, H.; Yui, T., Highly soluble [1] benzothieno [3, 2-b] benzothiophene (BTBT) derivatives for high-performance, solution-processed organic field-effect transistors. Journal of the American Chemical Society 2007, 129, 15732-15733.
18. Bao, Z.; Lovinger, A. J.; Brown, J., New air-stable n-channel organic thin film transistors. Journal of the American Chemical Society 1998, 120, 207-208.
19. Jurchescu, O. D.; Popinciuc, M.; van Wees, B. J.; Palstra, T. T., Interface‐controlled, high‐mobility organic transistors. Adv. Mat. 2007, 19, 688-692.
20. Watanabe, M.; Chang, Y. J.; Liu, S.-W.; Chao, T.-H.; Goto, K.; Islam, M. M.; Yuan, C.-H.; Tao, Y.-T.; Shinmyozu, T.; Chow, T. J., The synthesis, crystal structure and charge-transport properties of hexacene. Nature chemistry 2012, 4, 574.
21. Wang, M.; Li, J.; Zhao, G.; Wu, Q.; Huang, Y.; Hu, W.; Gao, X.; Li, H.; Zhu, D., High‐Performance Organic Field‐Effect Transistors Based on Single and Large‐Area Aligned Crystalline Microribbons of 6, 13‐Dichloropentacene. Adv. Mat. 2013, 25, 2229-2233.
22. Mannsfeld, S. C.; Tang, M. L.; Bao, Z., Thin film structure of triisopropylsilylethynyl‐functionalized pentacene and tetraceno [2, 3‐b] thiophene from grazing incidence X‐Ray diffraction. Adv. Mat. 2011, 23, 127-131.
23. Anthony, J. E.; Eaton, D. L.; Parkin, S. R., A road map to stable, soluble, easily crystallized pentacene derivatives. Organic letters 2002, 4, 15-18.
24. Garnier, F.; Hajlaoui, R.; El Kassmi, A.; Horowitz, G.; Laigre, L.; Porzio, W.; Armanini, M.; Provasoli, F., Dihexylquaterthiophene, a two-dimensional liquid crystal-like organic semiconductor with high transport properties. Chem. Mater. 1998, 10, 3334-3339.
25. Shukla, D.; Nelson, S. F.; Freeman, D. C.; Rajeswaran, M.; Ahearn, W. G.; Meyer, D. M.; Carey, J. T., Thin-film morphology control in naphthalene-diimide-based semiconductors: high mobility n-type semiconductor for organic thin-film transistors. Chem. Mater. 2008, 20, 7486-7491.
26. Katz, H.; Lovinger, A.; Johnson, J.; Kloc, C.; Siegrist, T.; Li, W.; Lin, Y.-Y.; Dodabalapur, A., A soluble and air-stable organic semiconductor with high electron mobility. Nature 2000, 404, 478.
27. Katz, H. E.; Johnson, J.; Lovinger, A. J.; Li, W., Naphthalenetetracarboxylic diimide-based n-channel transistor semiconductors: structural variation and thiol-enhanced gold contacts. Journal of the American Chemical Society 2000, 122, 7787-7792.
28. He, T.; Stolte, M.; Würthner, F., Air‐stable n‐channel organic single crystal field‐effect transistors based on microribbons of core‐chlorinated naphthalene diimide. Adv. Mat. 2013, 25, 6951-6955.
29. Brown, A.; De Leeuw, D.; Lous, E.; Havinga, E., Organic n-type field-effect transistor. Synthetic metals 1994, 66, 257-261.
30. Menard, E.; Podzorov, V.; Hur, S. H.; Gaur, A.; Gershenson, M. E.; Rogers, J. A., High‐performance n‐and p‐type single‐crystal organic transistors with free‐space gate dielectrics. Adv. Mat. 2004, 16, 2097-2101.
31. Oh, J. H.; Suraru, S. L.; Lee, W. Y.; Könemann, M.; Höffken, H. W.; Röger, C.; Schmidt, R.; Chung, Y.; Chen, W. C.; Würthner, F., High‐Performance Air‐Stable n‐Type Organic Transistors Based on Core‐Chlorinated Naphthalene Tetracarboxylic Diimides. Adv. Funct. Mater. 2010, 20, 2148-2156.
32. Gao, X.; Hu, Y., Development of n-type organic semiconductors for thin film transistors: a viewpoint of molecular design. J. Mater. Chem. C 2014, 2, 3099-3117.
33. Pappenfus, T. M.; Chesterfield, R. J.; Frisbie, C. D.; Mann, K. R.; Casado, J.; Raff, J. D.; Miller, L. L., A π-stacking terthiophene-based quinodimethane is an n-channel conductor in a thin film transistor. Journal of the American Chemical Society 2002, 124, 4184-4185.
34. Wu, Q.; Li, R.; Hong, W.; Li, H.; Gao, X.; Zhu, D., Dicyanomethylene-Substituted Fused Tetrathienoquinoid for High-Performance, Ambient-Stable, Solution-Processable n-Channel Organic Thin-Film Transistors. Chem. Mater. 2011, 23, 3138-3140.
35. Qiao, Y.; Guo, Y.; Yu, C.; Zhang, F.; Xu, W.; Liu, Y.; Zhu, D., Diketopyrrolopyrrole-containing quinoidal small molecules for high-performance, air-stable, and solution-processable n-channel organic field-effect transistors. Journal of the American Chemical Society 2012, 134, 4084-4087.
36. Huang, H.; Yang, L.; Facchetti, A.; Marks, T. J., Organic and polymeric semiconductors enhanced by noncovalent conformational locks. Chem. Rev. 2017, 117, 10291-10318.
37. Ahmadi, S.; Asim, N.; Alghoul, M.; Hammadi, F.; Saeedfar, K.; Ludin, N. A.; Zaidi, S. H.; Sopian, K., The role of physical techniques on the preparation of photoanodes for dye sensitized solar cells. International Journal of Photoenergy 2014, 2014.
38. Diao, Y.; Shaw, L.; Bao, Z.; Mannsfeld, S. C., Morphology control strategies for solution-processed organic semiconductor thin films. Energy & Environmental Science 2014, 7, 2145-2159.
39. Vegiraju, S.; Chang, B. C.; Priyanka, P.; Huang, D. Y.; Wu, K. Y.; Li, L. H.; Chang, W. C.; Lai, Y. Y.; Hong, S. H.; Yu, B. C., Intramolecular Locked Dithioalkylbithiophene‐Based Semiconductors for High‐Performance Organic Field‐Effect Transistors. Adv. Mat. 2017, 29, 1702414.
40. Mei, J.; Bao, Z., Side chain engineering in solution-processable conjugated polymers. Chem. Mater. 2013, 26, 604-615.