跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝佳諭
Chia-Yu Hsieh
論文名稱: 在 CERN COMPASS 實驗組量測190-GeVπ 介子束流所產生Drell-Yan 過程反應截面
Measurement of the differential Drell–Yan cross sections with 190-GeV pion beams in the COMPASS Experiment at CERN
指導教授: 林宗泰
Willis T. Lin
章文箴
Wen-Chen Chang June,
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2021
畢業學年度: 109
語文別: 英文
論文頁數: 220
中文關鍵詞: π介子的部分子動量分布Drell-Yan碰撞截面積COMPASS實驗
外文關鍵詞: Pion parton distribution function, Drell-Yan cross-section, COMPASS experiment
相關次數: 點閱:18下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 位於歐洲核子研究中心的COMPASS實驗組, 在2015年 與2018年利用190十億電子伏特的π介子束碰撞三種物質極化 鞍靶,鋁靶,以及鎢靶, 進行Drell-Yan過程的碰撞截面積量測. 選取不變質量為4.3GV-8.5GeV的雙渺子事件,本論文報告多維度的Drell-Yan碰撞截面積的分析方法和結果,事件分佈在費米變量從-0.1到0.9以及橫向動量0.0到3.6 GeV/c範圍 此量測結果將有助於決定π介子的部分子動量分布 COMPASS的 實驗量測反應截面和量子色動力學的理論計算有很好的吻合度在橫向動量平均分布方面的量測,COMPASS的實驗組的量測結果也與過去的實驗量測結果有一致性,可以用於決定π介子的內部節構ž.


    The COMPASS experiment at CERN performed measurements
    of Drell-Yan process using a 190-GeV negative pion beam
    scattering off a NH3 target and nuclear alumina and tungsten targets in 2015 and 2018. We present the results of differential cross sections of the dimuon events with the invariant mass between 4.5 and 8.5 GeV in the kinematic regions of x-Feynman from -0.1 to 0.9 and transverse momentum up to 3.6 GeV/c. Our results are valuable input for constraining the parton distribution functions (PDFs) of the pion. The measured differential cross sections are compared with the next-to-leading
    order QCD calculations with pion PDFs provided by JAM and
    xFitter groups and a reasonable agreement is observed. The result of the mean square of the transverse momentum versus the center-of-mass energy from COMPASS agrees with the measurements of the other pion-induced Drell-Yan experiments and constrains the intrinsic transverse momentum of pions.

    Overview 1 1 Theory 3 1.1 Quantum chromodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Parton distribution function . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.1 Parton model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2.2 Parton distribution function of proton . . . . . . . . . . . . . . . . 6 1.2.3 Parton distribution function of pion . . . . . . . . . . . . . . . . . . 9 1.3 Drell-Yan process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 1.3.2 Mechanism of naïve Drell-Yan model . . . . . . . . . . . . . . . . . 17 1.3.3 Experimental overview of Drell-Yan measurements . . . . . . . . . . 19 1.3.4 Predictions from naïve Drell-Yan model . . . . . . . . . . . . . . . 22 1.3.5 QCD improved Drell-Yan model . . . . . . . . . . . . . . . . . . . . 28 1.4 JPsi process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4.2 Charmonium spectrum . . . . . . . . . . . . . . . . . . . . . . . . . 32 1.4.3 The models of charmonium production . . . . . . . . . . . . . . . . 34 2 The COMPASS experiment 39 2.1 General description of COMPASS . . . . . . . . . . . . . . . . . . . . . . . 39 2.1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.1.2 Beam . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 2.1.3 Target setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 2.1.4 Detectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2.1.5 Trigger system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2.1.6 Data acquisition system . . . . . . . . . . . . . . . . . . . . . . . . 55 2.1.7 COMPASS softwares . . . . . . . . . . . . . . . . . . . . . . . . . . 56 2.2 Drift chamber 05 in COMPASS . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2.1 Operation principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 2.2.2 Design and configuration of chamber . . . . . . . . . . . . . . . . . 58 2.2.3 Front-end electronics . . . . . . . . . . . . . . . . . . . . . . . . . . 60 2.2.4 Performance of DC05 chamber with FEE . . . . . . . . . . . . . . . 65 3 Measurement of Drell-Yan cross section in COMPASS experiment 69 3.1 Luminosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 3.1.1 Estimation of target density . . . . . . . . . . . . . . . . . . . . . . 71 3.1.2 Estimation of beam flux . . . . . . . . . . . . . . . . . . . . . . . . 74 3.1.3 COMPASS luminosity in 2018 . . . . . . . . . . . . . . . . . . . . . 77 3.2 Measurement of lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.2.1 Lifetime in COMPASS . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.2.2 DAQ lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 3.2.3 VETO lifetime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 3.3 Selection of dimuon events . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.3.1 Observables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 3.3.2 Data selections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.3.3 Kinematics distributions . . . . . . . . . . . . . . . . . . . . . . . . 89 3.4 Extraction of acceptance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 3.4.1 Pythia8 settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.4.2 Beam setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.4.3 Trigger efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 3.4.4 Detector efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 3.4.5 Acceptance distribution . . . . . . . . . . . . . . . . . . . . . . . . 98 3.4.6 Monte-Carlo and real data comparison . . . . . . . . . . . . . . . . 101 3.5 Extraction of differential Drell-Yan cross-section . . . . . . . . . . . . . . . 106 3.5.1 Method to extract differential cross-section . . . . . . . . . . . . . . 106 3.5.2 Three-dimensional cross-section . . . . . . . . . . . . . . . . . . . . 106 3.5.3 Two-dimensional cross-section . . . . . . . . . . . . . . . . . . . . . 108 3.5.4 One-dimensional cross-section . . . . . . . . . . . . . . . . . . . . . 121 3.6 Systematic uncertainty . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 3.6.1 Luminosity estimation and lifetime . . . . . . . . . . . . . . . . . . 124 3.6.2 Multidimensional acceptance correction . . . . . . . . . . . . . . . . 125 3.6.3 Re-interaction effect on W cells . . . . . . . . . . . . . . . . . . . . 125 3.6.4 Zvtx-dependent cross-section . . . . . . . . . . . . . . . . . . . . . . 126 3.6.5 Period-dependent cross-section . . . . . . . . . . . . . . . . . . . . . 127 3.6.6 Trigger-dependent cross-section . . . . . . . . . . . . . . . . . . . . 129 3.6.7 Overall systematic uncertainty . . . . . . . . . . . . . . . . . . . . . 131 4 Phenomenology study of J= mechanism under NRQCD framework 135 4.1 Charmonium cross-section in NRQCD . . . . . . . . . . . . . . . . . . . . 135 4.2 Extraction of LDEMs includes pion data . . . . . . . . . . . . . . . . . . . 139 4.3 Test the sensitivity of gluon distribution inside pion . . . . . . . . . . . . . 148 Summary and Outlook 151 Appendix 155 Numerical values of 1D cross-section . . . . . . . . . . . . . . . . . . . . . . . . 155 Numerical values of 2D cross-section in xF and p  . . . . . . . . . . . . . . . . 158 Numerical values of 2D cross-section in xF and pT . . . . . . . . . . . . . . . . . 160 Numerical values of 2D cross-section in pT and dM . . . . . . . . . . . . . . . 164 Numerical values of 3D cross-section . . . . . . . . . . . . . . . . . . . . . . . . 167 Data selection of DAQ and VETO lifetime estimation . . . . . . . . . . . . . . . 173 Real data selection of the dimuon events . . . . . . . . . . . . . . . . . . . . . . 174 MC selection of the dimuon events . . . . . . . . . . . . . . . . . . . . . . . . . 178 Pythia setting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182 Bibliography 183

    [1] C. Patrignani, et al: Chin. Phys. C, 40, 100001 (2016)
    [2] H1 and ZEUS Collaboration, Eur. Phys. J. C75, 580 (2015)
    [3] S. Dulat, et al:, Phys. Rev. D 93, 033006 (2016)
    [4] NNPDF Collaboration, NNPDF Website
    [5] L. A. Harland-Lang, et al:, Eur. Phys. J. C75, 204 (2015)
    [6] T. Horn and C. D. Roberts, J. Phys. G 43, 073001 (2016)
    [7] C. D. Roberts, Symmetry 12, 1468 (2020)
    [8] Parada T. P. Hutauruk, et al:, Phys. Rev. C 94, 035201 (2016)
    [9] Z. F. Cui et al:, Eur. Phys. J. C 80, no. 11, 1064 (2020)
    [10] X. Ji, et al:, Phys. Rev. Lett. 110, 262002 (2013)
    [11] J. F. Owens, Phys. Rev. D 30, 943 (1984)
    [12] P. Aurenche, et al:, Phys. Lett. B 233, 517 (1989).
    [13] M. Glfick, et al:, Z. Phys. C 53, 651-655 (1992)
    [14] M. Gl¨uck, et al:, Eur. Phys. J. C 10, 313(1999)
    [15] P. J. Sutton, et al:, Phys. Rev. D 45, 2349(1992)
    [16] P. C. Barry, et al:, Phys. Rev. Lett. 121, 152001 (2018)
    [17] ZEUS Collaboration, Nuclear Phys. B 776, 1-37 (2007)
    [18] I. Novikov, et al:, Phys. Rev. Lett. 102, 014040 (2020)
    [19] S. D. Drell and Tung-Mow Yan, Phys. Rev. Lett. 25, 316 (1970)
    [20] W.-C. Chang, et al:, Phys. Rev. D 102, 054024 (2020)
    [21] J. S. Conway, et al:, Phys. Rev. D 39, 92 (1989)
    [22] B. Betev, et al:, Z. Phys. C 28, 9-14 (1985)
    [23] J. Badier, et al:, Conf. C790823 (1979)
    [24] R. J. Holt and C. D. Roberts, Rev. Mod. Phys. 82, 2991(2010)
    [25] K. D. Bednar, et al:, Phys. Rev. Lett. 124, 042002 (2020)
    [26] M. Aicher, et al:, Phys. Rev. Lett. 105, 252003 (2010)
    [27] J. T. Londergan, et al:, Phys. Lett. B 361, 110 (1995)
    [28] J. H. Christenson, et al:, Phys. Rev. Lett. 25, 1523 (1970)
    [29] I. R. Kenyon, Rep. Prog. Phys. 45, 1261 (1982)
    [30] W. J. Stirling and M. R. Whalley, J. Phys. G 19, D 1 (1993)
    [31] A. L. S. Angelis, et al:, Phys. Lett. 87B, 398 (1979)
    [32] C. Kourkoumelis, et al:, Phys. Lett. 91B, 475 (1979)
    [33] J. Alitti, et al:, Phys. Lett. 275B, 202 (1992)
    [34] D. Antreasyan, et al:, Phys. Rev. Lett. 48, 302 (1981)
    [35] E. Anassontzis, et al:, Phys. Rev. D38, 1377 (1988)
    [36] M. J. Corden, et al:, Phys. Lett. 96B (1980)
    [37] A. S. Ito, et al:, Phys. Rev. D 23, 604-633 (1981)
    [38] D. Antreasyan, et al:, Phys.Rev.Lett. 39, 906 (1979)
    [39] K. J. Anderson, et al:, Phys. Rev. Lett. 42, 944-947 (1979)
    [40] S. R. Smith, et al:, Phys. Rev. Lett. 46, 1607-1610 (1981)
    [41] D. M. Alde, et al:, Phys. Rev. D 43, 2815-2835 (1991)
    [42] D. M. Alde, et al:, Phys. Rev. Lett. 64, 2479-2482 (1990)
    [43] M. A. Vasiliev, et al:, Phys. Rev. Lett. 83, 2304-2307 (1999)
    [44] H. B. Greenlee, et al:, Phys. Rev. Lett. 55, 1555 (1985)
    [45] R. Barate, et al:, Phys. Rev. Lett. 43, 1541 (1979)
    [46] R. Aghasyan, et al:, Phys. Rev. Lett. 119, 112002 (2017)
    [47] P.L. McGaughey, et al:, Annu. Rev. Nucl. Part. Sci. 49, 217–53 (1999)
    [48] J.-C. Peng, et al:, Phys. Rev. Lett. B 789, 10, 356-359 (2019)
    [49] D. M. Alde, et al:, Phys. Rev. Lett. 66, 2, 133–136 (1990)
    [50] J. Badier, et al:, Phys. Rev. Lett. B 104, 4, 335-359(1981)
    [51] S. Falciano, et al:, Preprint CERN-EP/81-52
    [52] A.V. Lipatov, et al:, JHEP 2011, 117 (2011)
    [53] M. Tanabashi, et al: Phys. Rev. D 98, 030001 (2018)
    [54] D. Cassel, J. Rosner, CERN Courier
    [55] P. Nason, et al:, Nucl. Phys. B303, 607 (1988)
    [56] H. Fritzsch, Phys. Lett. 67, 217 (1977)
    [57] E. L. Berger, D. L. Jones, Phys. Rev. D 23, 1521 (1981)
    [58] K.-T. Chao, PoS ConfinementX, 003 (2012)
    [59] Geoffrey T. Bodwin, et al:, Phys. Rev. D 51 , 1125 (1995); 55, 5853 (1997).
    [60] COMPASS Collaboration, COMPASS Website
    [61] COMPASS Collaboration, COMPASS Wikipedia
    [62] G. Baum, et al:, Tech. rep. CERN (1996)
    [63] G. Baum, et al:, Tech. rep. CERN (1996)
    [64] F. Gautheron, et al:, Tech. rep. CERN-SPSC-2010-014 (2010)
    [65] D. R. Longo, et al:, PhD Thesis of D. R. Longo (2018)
    [66] L. Gatignon, M. Leberig, Slides for Villars Meeting at CERN (2004)
    [67] NA62 Collaboration, Document from NA62 Experiment
    [68] A. Abragam, et al:, The Clarendon Press Oxford (1961)
    [69] P. Abbon, et al:, Nucl. Instr. and Meth. A Vol. 577, 455-518 (2007)
    [70] P. Wintz, et al:, COSY Experiment
    [71] M. Bodlak, et al:, J. Phys.: Conf. Ser. 513, 012029 (2014)
    [72] COMPASS Collaboration, COMPASS Experiment
    [73] COMPASS Collaboration, COMPASS Experiment
    [74] COMPASS Collaboration, COMPASS Experiment
    [75] C. Quintans , et al:, COMPASS Internal Note, March, 28 (2014)
    [76] C.-J. Na ¨ m, et al:, PhD Thesis of C.-J. Na ¨m (2020)
    [77] R. S. Heitz, et al:, PhD thesis of R. S. Heitz (2019)
    [78] M. Chiossoa, et al:, Document of CMAD chip
    [79] S. Tavernier, Interactions of Particles in Matter
    [80] Particle Data Group, Particle Data Group
    [81] B. Adeva, et al:, Nucl.Instrum.Meth.A 419, 60-82 (1998)
    [82] F., Springer, ISBN : 978-3-540-46356-6
    [83] T. Sjostrand, et al:, Comput. Phys. Commun., 178, 852–867 (2008)
    [84] M. Glück, et al:, Eur. Phys. J., C5, 461–470, (1998)
    [85] M. R. Whalley, et al:, HEP-PH/0508110
    [86] S. Catani, et al:, Phys. Rev. Lett. 103, 082001 (2019)
    [87] S. Catani, et al:, Phys. Rev. D 103, 114014 (2021)
    [88] M. Donnat, et al:, Z.Phys. C 38, 371 (1988)
    [89] A. Vladimirov, JHEP 2019, 90 (2019)
    [90] Xiaofeng Guo, Phys. Rev. D 58, 036001(1998)
    [91] E. Anassontzis, et al:, Phys. Rev. D 38, 1377 (1988)
    [92] Particle Data Group, PDG 2020
    [93] M. Beneke and I. Z. Rothstein, Phys. Rev. D 54, 2005 (1996)
    [94] E. J. Eichten and C. Quigg, Phys. Rev. D 52, 1762 (1995)
    [95] P. L. Cho and A. K. Leibovich, Phys. Rev. D 53, 6203 (1996)
    [96] F. Maltoni, et al:, Phys. Lett. B 638, 202 (2006)
    [97] R. Vogt, Phys. Rept.310, 197 (1999)
    [98] G. A. Schuler, arXiv:hep-ph/9403387
    [99] I. Abt, et al: Eur. Phys. J. C 49, 545 (2007)
    [100] C. Baglin, et al:, Phys. Lett. B 345, 617 (1995)
    [101] M. J. Corden, et al:, Phys. Lett. 96B, 411 (1980)
    [102] M. Butenschoen and B. A. Kniehl, Phys. Rev. Lett. 106, 022003 (2011)
    [103] Y. Q. Ma, et al:, Phys. Rev. Lett. 106, 042002 (2011)
    [104] M. Butenschoen and B. A. Kniehl, Phys. Rev. D 84, 051501 (2011)
    [105] Y. Q. Ma, et al:, Phys. Rev. D 84, 114001 (2011)

    QR CODE
    :::