| 研究生: |
林政智 Cheng-Chih Lin |
|---|---|
| 論文名稱: |
矽奈米線電晶體之電性分析與載子傳輸特性之探討 Electrical Analysis and Carrier Transport Characterization of Silicon Nanowire Transistors |
| 指導教授: |
李佩雯
Pei-Wen Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 122 |
| 中文關鍵詞: | 矽奈米線電晶體 |
| 外文關鍵詞: | Silicon Nanowire Transistors |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近年來,由於元件通道的微縮,導致載子能行經的空間不斷的被微縮,倘若此空間持續被微縮至奈米等級的話,其在載子傳輸的過程當中,傳輸機制將會受到量子效應所影響,因而造成在低溫的環境下,該元件電流往往都會出現震盪或者平台現象,此現象已經不能再用一般古典的理論來解釋了,因此在介觀物理下之量子效應如量子侷限效應、量子干涉效應、庫倫阻斷效應以及intersubband scattering 等將備受重視。因此本論文在一開始主要會針對三維結構之代表性元件傳統金氧半場效電晶體,以及零維結構之代表性元件單電子電晶體,將其載子傳輸行為做一簡略的介紹,之再以量測本實驗室所研發的矽奈米線電晶體所得到之電性結果,進一步探討載子行經在一維結構時的傳輸機制。另外將探討不同的條件下如通道寬度 、閘長度、位能障高度、汲極端所施加的偏壓以及照光與不照光等,觀察該因素對矽奈米線電晶體電流的影響。藉此可將眾多的量子效應一一釐清,找出影響元件電性的主要機制。並且再針對該機制做初步的定量分析,加以驗證該機制為元件主要載子傳輸機制。
In the past decades, the device dimensions have being aggressively scaled into the nanometer regime, in which strong quantum mechanics effects emerge to affect carrier transport. Consequently, the classical drift-diffusion models are not enough to explain well the mesoscopic carrier transport without taking the quantum interference, Coulomb blockade and/or intersubband scattering effects into account. In this thesis, we try to investigate or clarify possible carrier transport mechanisms in a Si nanowire metal-oxide-semiconductor field effect transistors (MOSFETs) by means of modulating the channel dimensions, substrate dopants, and light irradiations.
參考文獻
[1] S. E. Thompson et al., “A 90-nm Logic Technology Featuring Strained-silicon,” IEEE Trans. Electron Devices, vol. 51, p. 1790, 2004.
[2] S. Y. Wu et al., “A 32nm CMOS Low Power SoC Platform Technology for Foundry Applications with Functional High Density SRAM,” IEDM Tech. Dig., p. 263, 2007.
[3] R. Chau et al., “Silicon Nano-transistors For Logic Applications,” Physica E: Low-dimensional Systems and Nanostructures, vol. 19, p. 1, 2003.
[4] B. Yu et al., “One-dimensional Germanium Nanowires for Future Electronics,” J. Clust. Sci., vol. 17, p. 579, 2006.
[5] S. E. Thompson et al., “In Search of “Forever,” Continued Transistor Scaling One New Material at a Time,” IEEE Trans. Semicond. Manuf., vol. 18, p. 26, 2005.
[6] B. Yu and M. Meyyappan, “Nanotechnology: Role in Emerging Nanoelectronics,” Solid-State Electron., vol. 50, p. 536, 2006.
[7] M. Heuser et al., “Fabrication of Nanowire-MOSFETs on Silicon-on-insulator Substrate,” Microelectron. Eng., vol. 61-62, p. 613, 2002.
[8] G. Chen, A. Shakouri, “Heat Transfer in Nanostructures for Solid-State Energy Conversion,” J. Heat Transf., Trans. ASME, vol. 124, No. 2, p. 242, 2002.
[9] S.M. Sze, “Semiconductor Devices-Physics and Technology,2nd edition,” Wiley, New York, 2001.
[10] 陳啟東,「單電子電晶體簡介」,物理雙月刊,第二十六卷,第三期,483-490頁,2004年6月。
[11] S. C. Rustagi et al., “Low-Temperature Transport Characteristics and Quantum-Confinement Effects in Gate-All-Around Si-Nanowire N-MOSFET ,” IEEE Electron Device Letter, vol.27, p. 909, 2007.
[12] S. Lee, K. Miyaji, M. Kobayashi, T. Hiramoto , “Extremely High Flexibilities of Coulomb Blockade and Negative Differential Conductance Oscillations in Room-Temperature-Operating Silicon Single Hole transistor,” Applied Physics Letter, vol. 92, p. 073502, 2008.
[13] H. Uemo et al “Origin of Transconductance Oscillations in Silicon-on-Insulator Metal-Oxide-Semiconductor Field-Effect Transistors with an Ultrathin 6-nm-Thick Active Si Layer,” J. Appl. Phys. vol. 91, p. 5360, 2002.
[14] G. Wirth* et al “ Mesoscopic Transport Phenomena in Ultrashort Channel MOSFET, ” Solid-State Electronics vol. 43, p.1245, 1999.
[15] P. A. Lee, T. V. Ramakrishnan, “ Disordered Electronic Systems,” Rev. Mod. Phys. vol. 57, p. 287, 1985.
[16] A. Hartstein, “ Quantum Interference in Ultrashort Channel Length Silicon Metal-Oxide-Semiconductor Field-Effect Transistors,” Applied Physics Letter, vol. 59, p. 2028, 1991.
[17] F. Daug et al., “Coupling Effects and Channels Separation in FinFET,” Solid-State Electronics vol. 48, p.535, 2004.
[18] J. P. Colinge et al., “Threshold Voltage and Subthreshold Slope of Multiple-Gate SOI MOSFETs,” IEEE Electron Device Letter, vol. 24, No. 8, p. 515, 2003.
[19] C. W. J. Beenakker and H. van Houten, “ Quantum Transport in Semiconductor Nanostructures, ” Solid State Physics, vol. 44, p. 1, 1991.
[20] C. Wei et al “Investigation of Low-Frequency Noise in Silicon Nanowire MOSFETs in the Subthreshold Region,” IEEE Electron Device Letter, vol. 30, p. 668, 2009.