| 研究生: |
陳永昇 Yeng-Sheng Chen |
|---|---|
| 論文名稱: |
多載量無人搬車派送法則的研究 |
| 指導教授: |
何應欽
Ying-Chin Ho |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業管理研究所 Graduate Institute of Industrial Management |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 114 |
| 中文關鍵詞: | 多載量無人搬運車 、派車法則 、模擬實驗 |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在自動化生產系統上,是否能有效地把所需物料搬運至適當的地點,對於系統之績效有很大的影響。Tompkins等人(1984)曾清楚地指出,在製造成本中,工件搬運成本佔總加工成本的20%到50%。有鑒於此,如果能選擇一個適當的工件搬運系統,對於成本的降低是很重要的一件事。
在所有的搬運系統中,無人搬運車是物料搬運工業中兼具生產力和彈性的運輸設備,Lee等學者(1996)研究指出增加無人搬運車的負載量(即多載量無人搬運車),是一個能提高無人搬運車效率且又可以減輕車輛碰撞與壅塞問題的方法。而且,多載量無人搬運車還有降低車輛的閒置時問、減少總搬運距離、與減低車輛數目等優點。
多載量搬運車可在運送先前所分配的物件到達目的地的路程中,可額外揀起路程中等待運送的物件。因此,使用多載量車輛可以減少車輛閒置、降低無生產力的時間和總搬運距離,無人搬運車使用的數輛減少後,除了在設備投資上的節省外,還可緩和交通壅塞問題。但是增加負載的缺點就是車輛作業控制策略的複雜度提高了,而車輛作業控制策略的優劣,對多載量無人搬運車系統的績效有直接的影響。
本研究的主要目的就是在探討多載量無人搬運車系統在不同派車法則上的績效衡量,以撰寫模擬程式的方式來驗証多載量無人搬運車在工廠上實際的運作,並評估各種派車法則對其物料搬運的不同效果,祈能找出一個較好派車原則。最後藉著模擬驗證多載量無人搬運車在這些派車法則的績效表現,衡量各個法則所需的需求車輛數目、產出量和平均在系統的時間。
Bielge, U et. al. 1977 "AGV systems with multi-load carriers: basic issues and potential benefits", Journal of Manufacturing Systems, 16(3) 159-174
Bozer, Y. A. and Srinivasan, M. M., 1989, “Tandem configurations for AGV systems offer simplicity and flexibility,” Material Handling System, 21(2), 23-27.
Bozer, Y. A. and Srinvasan, M. M., 1992, “Tandem AGV system : a partitioning algorithm and performance comparison with conventional AGV systems,” European Journal of Operational Research, 63(1) , 173-191.
Bozer, Y. A., and Yen, C. K., 1996, “Intellignet dispatching rules for trip-based material handling systems”, Journal of Manufacturing Systems, 15(4), 226-239.
Egbelu, P. J., 1987a, “The use of non-simulation approaches in estimating vehicle requirements in an automated guided vehicle base transport System,” Material Flow, 2, 17-32.
Egbelu, P. J. and Tanchoco, J. M. A., 1986, “Potentials for bi-directional guide-path for automated guided systems,” International Journal of Production Research, 24(5), 1075-1097.
Gaskins, R. J., and Tanchoco, J. M. A., 1987, “Flow path design for automated guided vehicle systems,”International Journal of Production Research, 25(5), 667-676.
Gaskins, R. J., Tanchoco, J. M. A., and Taghoboni, F., 1989, “Virtual flow paths for free-ranging automated guided vehicle system,” International Journal of Production Research, 27(1), 91-100.
Ho, Y. C., and Shaw, H. C., 1998, “The performance of multiple-load AGV systems under different guide path configurations and vehicle control strategies,” the Joint Conference of the Fifth International Conference on Automation Technology and 1998 International Conference of Production Research(Asia Meeting) , July 20-22, Grand Hotel, Taipei, Taiwan, R.O.C., 1998.
Kim, C. W. and Tanchoco, J. M. A., 1991, “Conflict-free shortest path bi-directional AGV routing,” International Journal of Production Research, 29(12), 2377-2391.
Klein, C. M. and Kim, J., 1996, “AGV dispatching”, International Journal of Production Research, 34(1), 95-110.
Lee, J., Tangjarukij, M., and Zhu, Z., 1996,”Load selection of automated guided vehicles in flexible manufacturing systems”, International Journal of Production Research, 34(12), 3388-3400
Maxwell, W. L. and Muckstadt, J. A., 1982, “Design of automatic guided vehicle systems,” IIE Transaction, 14(2), 114-124.
Nayyar., P. and Khator, S. K., 1993, “Operational Control of multi-load vehicles in an automated guided vehicle system”. Computers and Industrial Engineering, 25(1-4), 503-506.
Newton, D., 1985, “Simulation model calculates how many automated guided vehicle are needed,”Industrial Engineering, 8(2), 68-77.
Occena, L. G. and Yokota, T., 1991, “Modeling of an automated guided vehicle system (AGVs) in a just-in-time (JIT) environment,” International Journal of Production Research, 29(3), 495-511.
Rajotia, S., Shanker, K., and Batra, J. L., 1998, “Determination of optimal AGV fleet size for an FMS,” International Journal of Production Research, 36(5), 1177-1198.
Sinriech, D. and Tanchoco, J. M. A., 1995, “An introduction to the segmented flow approach for discrete material flow systems,” International Journal of Production Research, 33(12), 3381-3410.
Sinriech, D. Tanchoco, J. M. A., and Herer, Y. T., 1996, “The segmented bi-directional single-loop topology for material flow systems,” IIE Transactions, 28(1), 40-54.
Tanchoco, J. M. A. and Sinriech, D., 1991, “OSL-optimal single loop guided paths for AGVs,” International Journal of Production Research, 30(3), 665-681.
Tanchoco, J. M. A., and Co, C. G., 1994, “Real-time control strategies for multiple-load AGVs,” Material Flow Systems in Manufacturing, edit by Tanchoco, J. M. A. (Chapman & Hall), pp. 300-331.
Yim. D., and Linn. R. J., 1993, “Push and pull rules for dispatching automated guided vehicles in a flexible manufacturing system”. International Journal of Production Research, 31(1), 43-57.