跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林啟盛
Chi-Sheng Lin
論文名稱: 新世代智慧交通運輸車載通訊系統:由收發機設計、換手與實車測試為發想
A Novel Vehicular Communication toward Next-generation ITS Standardization: Transceiver Design, Handover Improvement and Field Trial
指導教授: 林嘉慶
Jia-Chin Lin
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 99
中文關鍵詞: 智慧交通運輸車載通訊無線通訊
外文關鍵詞: intelligent transportation system, Vehicular Communication, Wireless Communication
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要討論車載通訊與智慧交通運輸系統的橫向整合應用。由資通訊系統的規格制定與設備驗證、收發機設計到整合資通訊設備並佈建實際智慧型交通運輸系統;藉由軟體模擬以及實車驗證研發適合的技術。

    本論文第一章針對車載通訊與智慧型交通運輸系統的關聯性以及過去研究與未來發展做討論。以通訊技術發展為主軸,對車間與車對路側基地台之間的資料傳輸關係進行技術分析。

    第二章主要討論規格制定與測試環境;先對於車載通訊系統的無線通道進行討論接著討論設備驗證工作時的實車、實場測試流程,最後從測試結果對照理論模擬進行討論。

    第三章則是針對車載通訊系統收發機設計進行研究,根據現有IEEE 802.11p所使用的OFDM技術的不足部分進行延伸,並且討論多種被提出的OFDM相關技術。針對這些被廣泛提出的技術並且參考中國大陸的TDS-OFDM 技術設計出適合在車載系統上運作的Data-aidded OFDM (DA-OFDM)系統。

    第四章則是將在第三章中所提出的DA-OFDM技術應用在智慧型交通運輸系統上。在多路側基地台(Roadside Unit, RSU)的環境下,討論換手問題,並且針對換手最基本也是第一個發生的路側基地台的搜尋及辨識問題進行討論。

    因為DA-OFDM與過去設計不同,並且TDS-OFDM對訊號接收與同步的研究也不完整,所以本文修正被普遍採用的Beek’s ML estimation技術使其可以使用在DA-OFDM上,並且也利用這個同步技術建立路側基地台的搜尋及辨識方法。


    Next-generation Telematics solutions are being driven by the maturation of recently deployed intelligent transportation systems (ITSs), assisted by the integration of and rapid collaboration with information communication technology (ICT) markets and the utomotive industry. Examples of this trend can be found in Dedicated Short-Range Communication (DSRC) contexts where wireless communication techniques have become significantly relevant in vehicular environments.

    In this dissertation, three topics are covered:

    The first topic is focused on Comprehensive field trials. In this section, several procedures are conducted and relevant measurements are collected in physical environments to investigate the possible environmental factors that occur in vehicle-to-roadsideinfrastructure (V2I) communication scenarios. In these carefully controlled automobile experiments, the most representative parameters are measured and analyzed for DSRC in dynamic environments, e.g., packet loss, latency and delay spread. Using a systematic testing procedure and thorough measurement analysis, the communication performance and operating reliability of wireless communications can be effectively verified; insightful improvements, helpful suggestions and additional contributions may thus be derived for Telematics system designs. Furthermore, a practical, reasonable, standardized testing procedure is proposed that can be utilized in equipment verification and product certification.

    Transceiver structure is covered as the second topic. Frequency errors and imperfect channel estimations (CE) are severe issues that occur in conventional systems that completely follow the current IEEE 802.11p standard. This research investigates novel techniques for conducting accurate frequency offset compensations and effective CEs. More recently, data-aided orthogonal frequency-division multiplexing (DA-OFDM) communications such as Pseudo-Random-Postfix OFDM (PRP-OFDM) and Time-Domain-Synchronous OFDM (TDS-OFDM) have been the focus of research because of their higher effectiveness, efficiency and transmission quality.

    Roadside unit (RSU) selection is examined as the third topic. In the conventional IEEE 802.11p standard, the handover procedure is based on the Mobile IP technique. However, this technique is inefficient in a high-mobility environment. In this research, RSU selection (which uses a similar idea from mobile/cellular communications) is proposed to improve handover speed.

    摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii 誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 ITS History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Operational Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.3 Classify Recent Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3.1 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.2 Vehicular Communication Applications . . . . . . . . . . . . . . . . 9 1.3.3 Transmission Performance and System Reliability . . . . . . . . . . 11 1.4 Issues and Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Standardization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.1 Current Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.2 Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 2.2.1 Vehicle-to-Vehicle/Infrastructure Channel Properties . . . . . . . . 21 2.3 Performance Evaluation of IEEE 802.11p in V2I Environment by Software Simulation and Field Trial . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.1 Evaluation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.3.2 Experimental Flow and Test Platform Development . . . . . . . . . 26 2.3.3 Field Trial Scenario . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.4 Co-channel Interference (CCI) Monitoring . . . . . . . . . . . . . . 28 2.3.5 RSU Coverage Determination . . . . . . . . . . . . . . . . . . . . . 29 2.3.6 Data Collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 2.4 Experimental Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3 Vehicular Communication Transceiver Design . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1 OFDMClassification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 3.1.1 Class 1: CP-OFDM. . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.1.2 Class 2: PRP and KSP-OFDM . . . . . . . . . . . . . . . . . . . . 40 3.1.3 Class 3: ZP, UW, TDS-OFDM . . . . . . . . . . . . . . . . . . . . 42 3.2 Channel Estimation Techniques . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2.1 Class 1: Frequency Domain Pilot Channel Estimation . . . . . . . . 44 3.2.2 Class 2: Time Domain (TD) Channel Estimation . . . . . . . . . . 45 3.2.3 Class 3: Pseudo-Pilot . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.3 Data-aided OFDM(DA-OFDM) . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.1 System Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.3.2 Proposed TD CE Technique . . . . . . . . . . . . . . . . . . . . . . 50 3.3.3 Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 4 Handover and Location Service. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.1 Location Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 4.2 RSU Topology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2.1 Geographic Deployment . . . . . . . . . . . . . . . . . . . . . . . . 66 4.2.2 Mobility Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3 RSU Scanning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.4 RSU Selection and Handover . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4.1 Handover Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4.2 RSU Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.5 Simulation and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

    [1] ETSI. ETSI technical committee intelligent transportation system. [Online]. Available:
    http://www.etsi.org/WebSite/Technologies/IntelligentTransportSystems.aspx
    [2] A. Goldsmith, Wireless Communications. Cambridge University Press, 2005.
    [3] D. Kopitz and B. Marks, RDS, the radio data system. Artech House, Oct. 1999.
    [4] “FCC report and order 06-110: Amendment of the commissions rules regarding dedicated
    short-range communication services in the 5.850-5.925 GHz band,” FCC Report
    and Order, Tech. Rep., Jul. 2006.
    [5] “Federal communications commission. FCC 99-305,” FCC Report and Order, Tech.
    Rep., Oct. 1999.
    [6] P. Papadimitratos, A. La Fortelle, K. Evenssen, R. Brignolo, and S. Cosenza, “Vehicular
    communication systems: Enabling technologies, applications, and future outlook
    on intelligent transportation,” IEEE Communications Magazine, vol. 47, no. 11, pp.
    84–95, Nov. 2009.
    [7] “IEEE standard for information technology–telecommunications and information exchange
    between systems local and metropolitan area networks–specific requirements
    part 11: Wireless lan medium access control (MAC) and physical layer (PHY) specifications,”
    IEEE Std 802.11-2012 (Revision of IEEE Std 802.11-2007), Mar. 2012.
    [8] T. Kosch, I. Kulp, M. Bechler, M. Strassberger, B. Weyl, and R. Lasowski, “Communication
    architecture for cooperative systems in Europe,” IEEE Communications
    Magazine, vol. 47, no. 5, pp. 116 –125, May 2009.
    [9] M. Emmelmann, B. Bochow, and C. Kellum, Vehicular Networking: Automotive
    Applications and Beyond. John Wiley & Sons, May 2010.
    J.-C. Lin, C.-S. Lin, C.-N. Liang, and B.-C. Chen, “Wireless communication performance
    based on IEEE 802.11p R2V field trials,” IEEE Communications Magazine,
    vol. 50, no. 5, pp. 184 –191, May 2012.
    [14] V. Bychkovsky, B. Hull, A. Miu, H. Balakrishnan, and S. Madden, “A measurement
    study of vehicular internet access using in situ Wi-Fi networks,” in Proc. 2006 12th
    annual international conference on Mobile computing and networking (MobiCom).
    ACM, 2006, pp. 50–61.
    [15] K. Dar, M. Bakhouya, J. Gaber, M. Wack, and P. Lorenz, “Wireless communication
    technologies for ITS applications,” IEEE Communications Magazine, vol. 48, no. 5,
    pp. 156 –162, May 2010.
    [16] National Highway Traffic Safety Administration (NHTSA), “Vehicle safety communications
    project final report, Appendix G: Field testing and evaluation of
    WAVE/DSRC communication functionalities,” U.S. DOT, Tech. Rep., Apr. 2006.
    [17] Q. Xu, T. Mak, J. Ko, and R. Sengupta, “Vehicle-to-vehicle safety messaging in
    DSRC,” in Proc. 2004 1st ACM Workshop on Vehicular Ad hoc Networks (VANET),
    2004, pp. 19–28.
    [18] F. Bai and H. Krishnan, “Reliability analysis of DSRC wireless communication for
    vehicle safety applications,” in Proc. 2006 IEEE Intelligent Transportation Systems
    Conference (ITSC), 2006, pp. 355–362.
    [19] M. Jerbi and S. Senouci, “Characterizing multi-hop communication in vehicular networks,”
    in Proc. 2008 IEEE Wireless Communications and Networking Conference
    (WCNC), 2008, pp. 3309 –3313.
    [20] M. Jerbi, S.-M. Senouci, and M. Al Haj, “Extensive experimental characterization
    of communications in vehicular Ad Hoc networks within different environments,” in
    Proc. 2007 IEEE 65th Vehicular Technology Conference Spring (VTC-Spring), 2007,
    pp. 2590 –2594.
    [21] G. Acosta-Marum and M. Ingram, “Six time and frequency selective empirical channel
    models for vehicular wireless LANs,” IEEE Vehicular Technology Magazine,
    vol. 2, no. 4, pp. 4–11, Dec. 2007.
    [22] C.-X. Wang, X. Cheng, and D. Laurenson, “Vehicle-to-vehicle channel modeling
    and measurements: recent advances and future challenges,” IEEE Communications
    Magazine, vol. 47, no. 11, pp. 96 –103, Nov. 2009.
    [23] G. Kiokes, A. Amditis, and N. Uzunoglu, “Simulation-based performance analysis
    and improvement of orthogonal frequency division multiplexing - 802.11p system for
    vehicular communications,” IET Intelligent Transport Systems, vol. 3, no. 4, pp. 429
    –436, Dec. 2009.
    [24] R. Grunheid, H. Rohling, J. Ran, E. Bolinth, and R. Kern, “Robust channel estimation
    in wireless LANs for mobile environments,” in Proc. 2002 IEEE 56th Vehicular
    Technology Conference Fall (VTC-Fall), vol. 3, 2002, pp. 1545–1549.
    [25] S. I. Kim, H. S. Oh, and H. K. Choi, “Mid-amble aided OFDM performance analysis
    in high mobility vehicular channel,” in Proc. 2008 IEEE Intelligent Vehicles
    Symposium, 2008, pp. 751–754.
    [26] W. Cho, S. I. Kim, H. K. Choi, H. S. Oh, and D. Y. Kwak, “Performance evaluation
    of V2V/V2I communications: The effect of midamble insertion,” in Proc. 2009
    1st International Conference on Wireless Communication, Vehicular Technology, Information
    Theory and Aerospace Electronic Systems Technology (Wireless VITAE),
    2009, pp. 793–797.
    [27] C.-S. Lin, C.-K. Sun, J.-C. Lin, and B.-C. Chen, “Performance evaluations of channel
    estimations in ieee 802.11p environments,” in Proc. 2009 International Conference
    on Ultra Modern Telecommunications Workshops (ICUMT), 2009, pp. 1–5.
    [28] ——, “Performance evaluations of channel estimations in IEEE 802.11p environments,”
    Telecommunication Systems, Springer Netherlands, pp. 1–12, Jun. 2011.
    [29] I. Hsu, M. Wodczak, R. White, T. Zhang, and T. R. Hsing, “Challenges, approaches,
    and solutions in intelligent transportation systems,” 2010, pp. 366–371.
    [30] I. Lequerica, M. Longaron, and P. Ruiz, “Drive and share: efficient provisioning of
    social networks in vehicular scenarios,” IEEE Communications Magazine, vol. 48,
    no. 11, pp. 90–97, Nov. 2010.
    [31] S. Shladover, “Challenges to evaluation of CO2 impacts of intelligent transportation
    systems,” 2011, pp. 189–194.
    [32] F. Bai and B. Krishnamachari, “Exploiting the wisdom of the crowd: Localized,
    distributed information-centric vanets,” IEEE Communications Magazine, vol. 48,
    no. 5, pp. 138–146, May 2010.
    [33] Directorate General for Policies on Cohesive Society, Cabinet Office, “Cabinet Office
    White Paper on Traffic Safety in Japan 2004,” Oct. 2004, White Paper. [Online].
    Available: http://www8.cao.go.jp/koutu/taisaku/kou-wp.html
    [34] L. Cheng, B. Henty, R. Cooper, D. Stancil, and F. Bai, “A measurement study of
    time-scaled 802.11a waveforms over the mobile-to-mobile vehicular channel at 5.9
    GHz,” IEEE Communications Magazine, vol. 46, no. 5, pp. 84 –91, May 2008.
    [35] J. S. Davis, J. Paul, and M. G. Linnartzly, “Vehicle to vehicle RF propagation measurements,”
    in Proc. 1994 28th Asilomar Conference, 1994.
    [36] R. Punnoose, P. Nikitin, J. Broch, and D. Stancil, “Optimizing wireless network protocols
    using real-time predictive propagation modeling,” in Proc. 1999 IEEE Radio
    and Wireless Conference (RAWCON), 1999, pp. 39 –44.
    [37] G. Acosta, K. Tokuda, and M. Ingram, “Measured joint Doppler-delay power profiles
    for vehicle-to-vehicle communications at 2.4 GHz,” in Proc. 2004 IEEE Global
    Telecommunications Conference (GLOBECOM), vol. 6, 2004, pp. 3813–3817.
    [38] A. Zajic, G. Stuber, T. Pratt, and S. Nguyen, “Wideband MIMO mobile-to-mobile
    channels: Geometry-based statistical modeling with experimental verification,” IEEE
    Transactions on Vehicular Technology, vol. 58, no. 2, pp. 517–534, Feb. 2009.
    [39] J. Maurer, T. Fugen, and W. Wiesbeck, “Narrow-band measurement and analysis
    of the inter-vehicle transmission channel at 5.2 GHz,” in Proc. 2002 IEEE 55th
    Vehicular Technology Conference Spring (VTC-Spring), vol. 3, 2002, pp. 1274 – 1278.
    [40] I. Sen and D. Matolak, “Vehicle-vehicle channel models for the 5 GHz band,” IEEE
    Transactions on Intelligent Transportation Systems, vol. 9, no. 2, pp. 235–245, Jun.
    2008.
    [41] Y. De Jong and M. Herben, “Prediction of local mean power using 2-D ray-tracingbased
    propagation models,” IEEE Transactions on Vehicular Technology, vol. 50,
    no. 1, pp. 325 –331, Jan. 2001.
    [42] T. S. Rappaport, Wireless Communications: Principles and Practice (2nd Edition).
    Prentice Hall PTR, Jan. 2002.
    [43] iperf. [Online]. Available: http://openmaniak.com/iperf
    [44] M.-X. Chang and T.-D. Hsieh, “Detection of OFDM signals in fast-varying channels
    with low-density pilot symbols,” IEEE Transactions on Vehicular Technology, vol. 57,
    no. 2, pp. 859 –872, Mar. 2008.
    [45] D. Jiang, V. Taliwal, A. Meier, W. Holfelder, and R. Herrtwich, “Design of 5.9
    GHz DSRC-based vehicular safety communication,” IEEE Wireless Communications,
    vol. 13, no. 5, pp. 36 –43, Oct. 2006.
    [46] J. Wang, J. Song, Z.-X. Yang, L. Yang, and J. Wang, “Frames theoretic analysis
    of zero-padding OFDM over deep fading wireless channels,” IEEE Transactions on
    Broadcasting, vol. 52, no. 2, pp. 252–260, Jun. 2006.
    [47] M. Muck, M. de Courville, M. Debbah, and P. Duhamel, “A pseudo random postfix
    OFDM modulator and inherent channel estimation techniques,” in Proc. 2003 IEEE
    Global Telecommunications Conference (GLOBECOM), vol. 4, 2003, pp. 2380 – 2384.
    [48] J.-C. Lin, “Least-squares channel estimation assisted by self-interference cancellation
    for mobile PRP-OFDM applications,” IET Communications, vol. 3, no. 12, pp. 1907–
    1918, Dec. 2009.
    [49] J.-S. Lin, H.-Y. Chen, and J.-C. Lin, “Channel estimation technique assisted by
    postfixed PN sequences with zero padding for wireless OFDM communications,”
    IEICE Transactions on Communications, vol. E91-B, no. 4, pp. 095–1102, Apr. 2008.
    [50] S. Sibecas, C. Corral, S. Emami, G. Stratis, and G. Rasor, “Pseudo-pilot OFDM
    scheme for 802.11a and R/A in DSRC applications,” in Proc. 2003 IEEE 58th Vehicular
    Technology Conference Fall (VTC-Fall), vol. 2, 2003, pp. 1234–1237.
    C. Lin, “Least-squares channel estimation for mobile OFDM communication on
    time-varying frequency-selective fading channels,” IEEE Transactions on Vehicular
    Technology, vol. 57, no. 6, pp. 3538–3550, Nov. 2008.
    [54] ——, “Channel estimation assisted by postfixed pseudo-noise sequences padded
    with zero samples for mobile orthogonal-frequency-division-multiplexing communications,”
    IET Communications, vol. 3, no. 4, pp. 561 –570, Apr. 2009.
    [55] H. Steendam, M. Moeneclaey, and H. Bruneel, “The Cramer-Rao bound and ML
    estimate for data-aided channel estimation in KSP-OFDM,” 2007, pp. 1–5.
    [56] H. S. Dieter Van Welden and M. Moeneclaey, “Frequency-domain data-aided channel
    estimation for KSP-OFDM,” 2008, pp. 613–617.
    [57] ——, “Iterative da/dd channel estimation for KSP-OFDM,” 2008, pp. 693–697.
    [58] D. V. Welden and H. Steendam, “Iterative EM based channel estimation for KSPOFDM,”
    2008, pp. 1–5.
    [59] D. V. Welden, H. Steendam, and M. Moeneclaey, “Time delay estimation for KSPOFDM
    systems in multipath fading channels,” 2009, pp. 3064–3068.
    [60] D. V. Welden and H. Steendam, “Near optimal iterative channel estimation for KSPOFDM,”
    IEEE Transactions on Signal Processing, vol. 58, no. 9, pp. 4948 – 4954,
    Sep. 2010.
    [61] D. V. Welden, H. Steendam, and M. Moeneclaey, “Frequency offset estimation for
    KSP-OFDM,” 2011, pp. 271–275.
    [62] B. Muquet, M. de Courville, G. Giannakis, Z. Wang, and P. Duhamel, “Reduced
    complexity equalizers for zero-padded OFDM transmissions,” in Proc. 2000 IEEE
    Hofbauer, and J. B. Huber, “The potential of unique words in
    OFDM,” in Proc. 2010 15th International OFDM-Workshop (InOWo), 2010, pp.
    140–144.
    [67] M. Huemer, C. Hofbauer, and J. Huber, “Complex number RS coded OFDM with
    systematic noise in the guard interval,” in Proc. 2010 44th Asilomar Conference on
    Signals, Systems and Computers (ASILOMAR), 2010, pp. 1023–1028.
    [68] ——, “Unique word prefix in SC/FDE and OFDM: A comparison,” in Proc. 2010
    IEEE GLOBECOM Workshops, 2010, pp. 1296–1301.
    [69] A. Onic and M. Huemer, “Sphere decoding for unique word OFDM,” in Proc. 2011
    IEEE Global Telecommunications Conference (GLOBECOM), 2011, pp. 1–5.
    [70] M. Huemer, A. Onic, and C. Hofbauer, “Classical and bayesian linear data estimators
    for unique word OFDM,” IEEE Transactions on Signal Processing, vol. 59, no. 12,
    pp. 6073 –6085, Dec. 2011.
    [71] H. Steendam, “Analysis of the redundant energy in UW-OFDM,” IEEE Transactions
    on Communications, vol. 60, no. 6, pp. 1692 –1701, Jun. 2012.
    [72] M. Huemer, C. Hofbauer, and J. Huber, “Non-systematic complex number RS coded
    OFDM by unique word prefix,” IEEE Transactions on Signal Processing, vol. 60,
    no. 1, pp. 285 –299, Jan. 2012.
    [73] M. Huemer, C. Hofbauer, A. Onic, and J. Huber, “On the exploitation of the redundant
    energy in UW-OFDM: LMMSE versus sphere detection,” IEEE Signal Processing
    Letters, vol. 19, no. 6, pp. 340–343, Jun. 2012.
    [74] J.-T. Wang, J. Song, J. Wang, C.-Y. Pan, Z.-X. Yang, and L. Yang, “A general SFN
    structure with transmit diversity for TDS-OFDM system,” IEEE Transactions on
    Broadcasting, vol. 52, no. 2, pp. 245–251, Jun. 2006.
    [75] “Framing structure, channel coding and modulation for digital television terrestrial
    broadcasting system,” GB20600-2006, Aug. 2006.
    [76] O. Edfors, M. Sandell, J.-J. van de Beek, S. Wilson, and P. Ola Borjesson, “OFDM
    channel estimation by singular value decomposition,” in Proc. 1996 46th IEEE Vehicular
    Technology Conference (VTC), vol. 2, 1996, pp. 923–927.
    [77] J.-J. van de Beek, O. Edfors, M. Sandell, S. Wilson, and P. Borjesson, “On channel
    estimation in OFDM systems,” in Proc. 1995 IEEE 45th Vehicular Technology
    Conference (VTC), vol. 2, 1995, pp. 815–819.
    [78] S. Ohno and G. Giannakis, “Optimal training and redundant precoding for block
    transmissions with application to wireless OFDM,” IEEE Transactions on Communications,
    vol. 50, no. 12, pp. 2113–2123, Dec. 2002.
    [79] H. Minn and V. Bhargava, “An investigation into time-domain approach for OFDM
    channel estimation,” IEEE Transactions on Broadcasting, vol. 46, no. 4, pp. 240–248,
    Dec. 2000.
    [80] C.-S. Lin and J.-C. Lin, “Handover in vehicular communication networks,” in Proc.
    2011 11th International Conference on ITS Telecommunications (ITST), 2011, pp.
    590 –595.
    [81] T.-S. Dao, K. Leung, C. Clark, and J. Huissoon, “Markov-based lane positioning
    using intervehicle communication,” IEEE Transactions on Intelligent Transportation
    Systems, vol. 8, no. 4, pp. 641–650, Dec. 2007.
    [82] H. Saleet, O. Basir, R. Langar, and R. Boutaba, “Region-based location-servicemanagement
    protocol for VANETs,” IEEE Transactions on Vehicular Technology,
    vol. 59, no. 2, pp. 917–931, Feb. 2010.
    [83] RDS-TMC Taiwan: Transportation Info. Center. [Online]. Available: http://eiot.
    iot.gov.tw/EIntegration new/RDS/RDS-TMC Format.htm
    [84] C.-S. Lin and J.-C. Lin, “Physical-layer transceiving techniques on data-aided OFDM
    toward seamless service on vehicular communications,” IET Communications, accepted.
    [85] W. Viriyasitavat, F. Bai, and O. Tonguz, “Dynamics of network connectivity in urban
    vehicular networks,” IEEE Journal on Selected Areas in Communications, vol. 29,
    no. 3, pp. 515–533, Mar. 2011.
    [86] J.-J. van de Beek, M. Sandell, and P. Borjesson, “ML estimation of time and frequency
    offset in OFDM systems,” IEEE Transactions on Signal Processing, vol. 45,
    no. 7, pp. 1800–1805, Jul. 1997.
    [87] P. Moose, “A technique for orthogonal frequency division multiplexing frequency
    offset correction,” IEEE Transactions on Communications, vol. 42, no. 10, pp. 2908–
    2914, Oct. 1994.
    [88] T.-Y. Wu and W.-F. Weng, “Reducing handoff delay of wireless access in vehicular
    environments by artificial neural network-based geographical fingerprint,” IET
    Communications, vol. 5, no. 4, pp. 542–553, Mar. 2011.
    [89] Unusual car navigation tricks: Injecting rds-tmc traffic information signals. [Online].
    Available: http://dev.inversepath.com/rds/

    QR CODE
    :::