跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張博堯
Po-Yao Chang
論文名稱: 增點式正方形網格開發及其在二維半導體元件模擬之應用
Development of point-added square element and its applications to 2-D semiconductor device simulation
指導教授: 蔡曜聰
Yao-Tsung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 57
中文關鍵詞: 網格半導體模擬
外文關鍵詞: mesh, semiconductor, simulation
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本篇論文中,我們主要使用C語言,建立出一套可以更精確模擬半導體元件,其為增點式正方形網格。用來提升模擬二維半導體元件之不規則接面處的準確度,並且比較傳統之正方形網格與增點式正方形網格之差異性,接著使用簡易電阻作理論計算,再與模擬結果相互比較來驗證,即可得知此架構是否設計正確並可行。最後,我們將增點式正方形網格應用在不規則形狀之半導體元件及應用在MOS電容器結構上,並加以探討在半導體元件上之不規則接面處,其臨限電壓與能帶曲線圖的變化與影響。


    In this thesis, we use C++ language to develop a new point-added square element for 2-D device simulation. It is used to improve the simulation of 2-D semiconductor device on irregular junction. Besides, we compare the difference between the traditional square element and point-added square element, and a simple resistor will be used to verify our result with theoretical value. After finishing these process, the point-added square element can be used in our simulation. In addition, we use the point-added square element to apply on the special semiconductor device, such as the resistor that it looks like a ring shape. We can also apply this new element on MOS capacitor. At last, we discuss the variation of threshold voltage and energy band on irregular junction of semiconductor device.

    摘要............................................i Abstract.......................................ii 目錄...........................................iii 圖目錄..........................................iv 表目錄..........................................i 第一章 簡介....................................1 第二章 二維網格與等效模型分析....................3 2-1. 二維網格分析概念..........................3 2-2. 增點式正方形網格結構定義..................9 第三章 增點式正方形網格探討與電阻驗證............16 3-1. 增點式正方形網格與正方形網格之比較.........16 3-2. 簡易電阻於直角座標下之驗證................18 3-3. 內嵌氧化層之方形電阻於直角座標下之驗證.....20 第四章 增點式正方形網格應用於二維半導體元件.......23 4-1. 環型半導體之應用與分析...................23 4-2. MOS電容器之結構與分析....................34 4-3. MOS電容器之臨限電壓隨結構改變之分析.......37 第五章 結論....................................42 參考文獻........................................44

    [1]M. J. Zeng, “Development of Triangular element and its applications to arbitrary 2D Semiconductor device,” M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2014.
    [2]C. H. Lee, “Development of 3D Trapezoidal Model and its Application to Semiconductor Device Simulation,”M. S. Thesis, Institute of EE, Nation Central University, Taiwan, Republic of China, 2015.
    [3]D. A. Neamen, Semiconductor physics and devices, 3rd ed., McGraw-Hill Companies Inc., New York, 2003.
    [4]S. M. Sze and K. K. Ng, Physics of Semiconductor Devices, 3rd ed. John Wiley & Sons, Inc. New Jersey, 2007.
    [5]C. C. Lin and M. E. Law, “2-D mesh adaption and flux discretization for dopant diffusion modeling,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 15, no. 2, pp. 194-207, 1996.
    [6]B. Baccus, D. Collard, E. Dubois, “Adaptive Mesh Refinement for Multilayer Process Simulation Using the Finite Element Method,” IEEE Trans, Computer-Aided Design, vol. 11. no. 3. 1992.
    [7]W. M. Coughran Jr., M. R. Pinto, and R. K. Smith, "Adaptive grid generation for VLSI device simulation", IEEE Trans. Computer-Aided Design, vol. 10, pp. 1259, 1991
    [8]M. Bern, D. Eppstein, and J. Gilbert, "Probably good mesh generation", J. Comput. Syst. Sci., vol. 48, pp. 384-409, 1994
    [9]G. Garreton, L. Villablanca, N. Strecker, W. Fichtner, “A New Approach for 2-D Mesh Generation for Complex Device Structures,” IEEE, Numerical Modeling of Processes and Devices for Integrated Circuits, pp. 159 – 162, Jun. 1994.
    [10]Sangho Yoon , “A mesh generation algorithm for complex geometry”, IEEE, Proc. SISPAD , pp. 218 – 221, 2000.
    [11]Florian Rudolf , “Template-based mesh generation for semiconductor devices”, IEEE, Proc, SISPAD, pp. 217 – 220, Sept. 2014
    [12]Sebastian Eiser , “Non-conforming meshes in multi-scale thermo-mechanical Finite Element Analysis of semiconductor power devices”, IEEE, Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems (EuroSimE), pp. 1 – 7, 2013.
    [13]W. Fichtner, “New developments and old problems in grid generation and adaptation for TCAD applications”, IEEE, Simulation of Semiconductor Processes and Devices, pp. 67 – 70, 1999.
    [14]Koichi Fukuda, “A moving mesh method for device simulation”, IEEE, International Conference on Simulation of Semiconductor Processes and Devices, pp. 409 – 412, Sept. 2015.
    [15]Karl Rupp, “Cell-centered finite volume schemes for semiconductor device simulation”, IEEE, International Conference on Simulation of Semiconductor Processes and Devices, pp. 365 – 368, Sept. 2014.
    [16]Daniel J. Cummings , “Comparison of Discretization Methods for Device Simulation”, IEEE, International Conference on Simulation of Semiconductor Processes and Devices, pp. 1 – 4, Sept. 2009.
    [17]B. Afeyan , “Modeling and design of optical semiconductor devices using FEMLAB, Wavelets and adaptivity”, IEEE, Numerical Simulation of Semiconductor Optoelectronic Devices, pp. 63 – 67, Oct. 2003.
    [18]C. Heitzinger, A. Sheikholeslami, J. M. Park, and S. Selberherr, “A method for generating structurally aligned grids for semiconductor device simulation,” IEEE Trans, Computer-Aided Design of Integrated Circuits and Systems, vol. 24, no. 10, Oct. 2005.
    [19]M. Lundstrom, and J. Guo, “Nanoscale transistor: device physics, modeling, and simulation,” Springer, New York, 2006.
    [20]S. Micheletti, “Stabilized finite elements for semiconductor device simulation,” Comput & Visual Sci., vol. 3, pp. 177-183, 2001.

    QR CODE
    :::