| 研究生: |
洪啟揚 CI-YANG HONG |
|---|---|
| 論文名稱: |
超音波與渦電流檢測應用在鋁合金相變化鑑定之研究 Ultrasonic and Eddy current measurement of microstructure variation in aluminum alloys |
| 指導教授: |
施登士
Teng-shih shih |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 超音波 、渦電流 、再結晶 、回復 、析出硬化 |
| 外文關鍵詞: | precipitation hardening, recrystallization, recovery, Eddy current, Ultrasonic |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鋁合金因其重量輕、強度高與耐腐蝕,故廣泛的應用在工業界,材料在經過熱處理與應變成型對於其機械性質影響很大,良好的熱處理與應變成型可以增加其強度,但不良的熱處理也反而會降低材料的機械性質,因此,本研究的目標係建立以非破壞檢測方式評估鋁合金的退火程度(回復、再結晶、晶粒成長)、人工時效析出硬化程度與應變硬化程度。
本實驗使用超音波檢測法(Ultrasonic testing)與渦電流檢測法(Eddy current testing),以了解鋁合金試片經過不同熱處理與輥壓製程後,其微觀組織與超音波音速、衰減率及渦電流導電特性之關係。實驗材料有純鋁(99.85%)、Al-7005 T6與Al-5052 H32,配合光學顯微鏡(OM)觀察微結構改變,並嘗試以超音波法與渦電流法評估鋁合金的退火程度(回復、再結晶、晶粒成長)、時效硬化程度與應變硬化程度。
實驗結果顯示,退火製程可用音速與導電度變化來評估純鋁、Al-7005 T6/5052 H32試片退火程度(回復、再結晶、晶粒成長),然而音波衰減率變異過大,故較不適合於檢測材料退火程度。Al-7005人工時效析出製程可用導電度來評估析出硬化程度,而音速與衰減率變異過大,故其較不適合於檢測材料析出硬化程度。Al-5052 H32冷輥壓製程中可以音速,音波衰減率及導電度評估應變硬化程度。
Having the lightweight and higher mechanical strength and corrosion resistance, aluminum alloys have been widely used in industry .The mechanical properties of material were affected by heat treatment and forming process .The fine heat treatment and forming can increase the mechanical strength, but the bad ones will decrease the mechanical strength. The goal of this study is to evaluate the level of annealing treatment(recovery, recrystallization, and grain growth),age precipitation hardening, and strain hardening in Aluminum alloys by NDT(Non-destructive testing) method.
This study used Ultrasonic testing and Eddy current testing methods to observe the relations of acoustic velocity, acoustic attenuation, and conductivity to material
microstructures through different heat treatments and rolling. These analyses have been performed on three kinds of materials including pure aluminum(99.85 wt.%) , aluminum alloys 7005 T6, and 5052 H32. We used OM to character the variation of microstructures of the annealing treatment (recovery, recrystallization, and grain growth),age hardening, and strain hardening, applying to Ultrasonic testing and Eddy current testing methods to find out their relations simultaneously.
The study had three conclusions as follows. First, in pure Al , Al-7005, and Al- 5052 through annealing treatment, there was a good correlation between microstructure and acoustic velocity or conductivity. However, the microstructures did not coincide with the acoustic attenuation which had large variations. Second, we could use conductivity to evaluate the level of age hardening in Al-7005, but acoustic velocity and attenuation did not fit to do it. Finally , in Al- 5052 we could use velocity、attenuation and conductivity to evaluate the level of strain hardening .
[1] ANST handbook, “Non-destructive testing handbook-ultrasonic testing”,Vol.7 2th Ed,
pp.830-850,1991
[2] 陳永增,鄧惠源,非破壞檢測,全華圖書有限公司,台北,民國88年
[3] A.Granato,K.Lucke,J.Appl.Phys,27 pp.583-593,1956
[4]Papadakis,E.P, “Revised grain-scattering formulas and tables”, J.Acoust. Soc.Am,37,p.703 , 1965
[5] P.Palanichamy,M, “Ultrasonic velocity measurements for characterizing the annealing behaviour of cold worked austenitic stainless steel”,NDT&E International,33,pp.253 -259,2000
[6] Anish Kumar, “Characterization of solutionizing behavior in VT14 titanium alloy using ultrasonic velocity and attenuation measurements”,Materials Science and Engineering A,360,pp.58-64,2003
[7] G.V.S. Murthy, “Correlation between ultrasonic velocity and indentation-based mechanical properties with microstructure in Nimonic 263”, Materials Science and Engineering,2007
[8] Silvio E. Kruger, “Monitoring austenite decomposition by ultrasonic velocity”, Materials Science and Engineering A, 425,pp.238-243,2006
[9] A. Nishara Begum, “On-line ultrasonic velocity measurements for characterization of microstructural evaluation during thermal aging of β-quenched zircaloy-2”, Materials Characterization,58,pp.563-570,2007
[10] M.Vasudevan, “Assessment of microstructure stability of cold worked Ti-modified austenitic stainless steel during aging using ultrasonic velocity measurements and correlation with mechanical properties”, Journal of Nuclear Materials,312,pp.181-190, 2003
[11] A.Badidi Bouda, “Grain size influence on ultrasonic velocities and attenuation”,
NDT&E International,36,pp.1-5,2003
[12] Bongyoung Ahn , “Application of the acoustic resonance method to evaluate the
grain size of low carbon steels”, NDT&E International,32,pp.85-89,1999
[13] Ridvan Unal , “The mean grain size determination of boron carbide (B4C)–aluminium (Al) and boron carbide (B4C)–nickel (Ni) composites by ultrasonic velocity technique ”,Materials Characterization,56,pp.241–244,2006
[14] I smail H. Sarpun, “Mean grain size determination in marbles by ultrasonic velocity techniques”, NDT&E International,38,pp.21-25,2005
[15] Dino N. Boccaccini, “Dependence of Ultrasonic Velocity on Porosity and Pore
Shape in Sintered Materials”, Journal of Nondestructive Evaluation,16, 1997
[16] M. Kaack , “Ultrasonic attenuation by dislocation formation in NiTi shape memory alloys”, Materials Science and Engineering A,378,pp.119-121,2004
[17] Toshihiro Ohtania, “Ultrasonic attenuation monitoring of fatigue damage in low carbon steels with electromagnetic acoustic resonance (EMAR) ”,Journal of Alloys and Compounds,310,pp.440–444,2000
[18] M. HIRAO, “Ultrasonic attenuation peak during fatigue of polycrystalline copper”, Acta mater.48,pp.517-524,2000
[19] Non-destructive testing handbook,“Electromagnetic testing ”,American society for non-destructive testing, vol. 4,2nd ed,1986
[20] E.W. Lee , “The effect of thermal exposure on the electrical conductivity and static mechanical behavior of several age hardenable aluminum alloys”, Engineering Failure Analysis,14pp.1538-1549,2007
[21] R.Clark Jr, “On the correlation of mechanical and physical properties of 7075-T6 Al alloy”, Engineering Failure Analysis,12,pp.520–526,2005
[22] M. Zergoug, “Relation between mechanical microhardness and impedance variations in eddy current testing”, NDT&E International,37pp.65-72,2004
[23] E.W. Lee, “The effect of thermal exposure on the electrical conductivity and static mechanical behavior of several age hardenable aluminum alloys”, Engineering Failure Analysis,14,pp.1538-1549,2007
[24] Feng Yu, “Dynamic Piezoresistivity Calibration for Eddy Current Nondestructive Residual Stress Measurements”, Journal of Nondestructive Evaluation,24,No. 4,2005.
[25] T. Uchimoto , “Eddy current evaluation of cast irons for material characterization”, Journal of Magnetism and Magnetic Materials,258,pp.493–496,2003
[26] S. Konoplyuk, “Characterization of ductile cast iron by eddy current method”, NDT&E International,38,pp.623-626,2005
[27] H. Wakiwaka , “Non-contact measurement of CNT compounding ratio in composite material by eddy current method”, Sensors and Actuators A ,129,pp.235–238,2006
[28] C. Hakan Gur , “Comparison of magnetic Barkhausen noise and ultrasonic velocity measurements for microstructure evaluation of SAE 1040 and SAE 4140 steels”, Materials Characterization,58,pp.447-454,2007
[29] Noritaka Yusa , “Numerical evaluation of the ill-posedness of eddy current problems to size real cracks”, NDT&E International,40,pp.185-191,2007
[30] 黃振賢,機械材料,文京圖書股份有限公司,新竹,民國69年
[31] John E.Hatch, “Aluminum properties and physical metallurgy”,American society for metals,1984
[32] ASM Metals handbook, Aluminum and aluminum alloys,1993
[33] R. D. Doherty, “Role of interfaces in kinetics of internal shape changes”, Metal Science, 16, pp.1-13,1982
[34] D.K. Denzer, D.J. Chakrabarti, J. Liu, “Method for Increasing the Strengthad or Corrosion Resistance of 7000 Series A1”, Aerospace Alloy Products,2003
[35] C.P. Ferrer, M.G Koul, B.J. Connolly, “Improvements in strength and stress corrosion cracking properties in aluminum alloy 7075 via low-temperature retrogression and re-ageing heat treatments”,Corros,59,p.520,2003
[36] T.C. Tsai and T.H. Chuang, “Relationship between electrical conductivity and stress corrosion cracking susceptibility of A1 7075 and A1 7475 alloys”, Corros,52,p.414,1996
[37] D.J.Lloyd, “The Deformation of Commercial Aluminum-Magnesium Alloys”,
Metall.Trans,11A,pp.1287-1294,1980
[38] Robert E.Reed-Hill,Dynamic Recovery,Physical Metallurgy Principles,3rd Ed,pp.
181-183,1994
[39] J.P.Lin, “Dynamic Recrystallization during Hoot Compression in Al-Mg”,Scripta Metallurgica,26,pp.1869-1874,1992
[40] Robert E.Reed-Hill,Recrystallization,Physical Metallurgy Principles,3rd Ed,pp.240
-242,1994
[41] TAI.Ankara, “Non-destructive investigation on the effect of precipitation hardening on impact toughness of 7020 Al-Zn-Mg alloy”, Materials Science and Engineering A,382,pp.395-400,2004
[42]S. Kojima, “High-speed deformation of aluminum by cold rolling”, Materials Science and Engineering A350,pp.81-85, 2003
[43]Smith, “The effect of grain size distribution on the frequency dependence of the ultrasonic attenuation in polycrystalline materials”,ultrasonics,pp.211-214, 1982
[44]Xiao-Hua Min, “Real-time ultrasonic measurement during tensile testing of aluminum alloys”, Materials Science and Engineering A392,pp.87-93, 2005
[45]陳永增,鄧惠源,機械材料實驗,高立圖書,民國86年
[46]黃昭然, “SUS 403麻田散鐵不銹鋼經熱機處理之機械及超音波特性研究”,大同大學
材料所碩士論文,台北,民國96年
[47]董彥臣, “以超音波特性評估6061-T651鋁合金冷作率對機械性質影響之研究”國立
台灣師範大學工教所碩士論文,台北,民國89年
[48]郭光程, “7005與AZ61A拉伸、壓縮之機械性質研究”國立中央大學機械工程研究
所碩士論文,桃園,民國90年
[49]鍾昆原, “7005擠製鋁合金的拉伸與疲勞性質研究”,國立中央大學機械工程研究所
碩士論文,桃園,民國91年
[50]楊智綱, “高強度航空用7000系鋁合金機械性質、抗應力腐蝕破壞性及銲接熱影響區特性之研究”,國立中央大學機械工程研究所博士論文,桃園,民國90年
[51]劉偉隆等編譯,物理冶金,全華科技圖書,民國93年