跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何宜祐
Yi-You He
論文名稱: 抑制層對降低電漿輔助原子層沉積二氧化鉿薄膜結晶之研究
Reduce the crystallization of Plasma-Enhanced Atomic Layer Deposition HfO2 thin film by insert interlayer
指導教授: 郭倩丞
Chien-Cheng Kuo
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 74
中文關鍵詞: 抑制薄膜結晶原子層沉積
外文關鍵詞: Atomic Layer Deposition, Reduce the crystallization
相關次數: 點閱:8下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文使用電漿輔助原子層沉積法鍍製二氧化鉿(HfO2)單層膜,在低溫製程100ºC下使用水、純氧電漿、氧氣混合氬氣電漿等不同氧化方式,探討折射率(n)和消光係數(k)的趨勢來找出最佳參數,研究發現使用氧氬混合電漿,能夠增強介面化學反應且降低雜質,使消光係數(k)在波長550 nm下最低可達到1.6×10-4,分析在相同製程溫度下熱製程與電漿製程的結晶強度,也探討了在相同製程溫度條件下隨著薄膜厚度增加,薄膜的結晶強度變化。
    由於原子層沉積技術在低溫100ºC下,使用電漿製程會比熱製程更容易使薄膜結晶,本論文研究出在HfO2薄膜中插入抑制層後成功降低薄膜結晶,過程中利用Macleod 軟體模擬,交叉驗證其方法的可行性,使用X光繞射儀分析HfO2薄膜,結晶強度成功從3126下降至110,降低了高達96%,用原子力顯微鏡分析薄膜表面,其薄膜粗糙度從1.94 nm下降至0.434 nm有著大幅度的進步,並使用掃描式電子顯微鏡觀察薄膜表面結晶情形,有著明顯表面平坦化的趨勢。


    In this thesis, plasma-enhanced atomic layer deposition (PE-ALD) was used to deposit a single layer of hafnium dioxide (HfO2) onto the wafer substrate. ALD makes use of various oxidation methods using water, pure oxygen plasma, and oxygen mixed argon plasma under a low-temperature 100ºC process. One must explore the trend of refractive index (n) and extinction coefficient (k) to find the best possible parameters of the single layer in question. The study found the use of oxygen mixed argon hybrid plasma, can enhance interface chemical reaction and reduce impurities. The lowest extinction coefficient (k) can reach 1.6×10-4 at a wavelength of 550 nm. Following this, the crystal strength of the thermal process and the plasma process at the same process temperature was analyzed. In addition, the change of the film crystallization strength with the increase of the film thickness under the same process temperature was also discussed.
    Since ALD technology uses plasma processes under low-temperature 100ºC processes, it is easier to crystallize thin film than the thermal process. This thesis studies the reduction of film crystallization by inserting a suppressor layer in the HfO2 film. Using Macleod software to simulate the process, the feasibility of the method was confirmed. An X-ray diffractometer was used to analyze HfO2 film. The crystal strength of HfO2 film was successfully reduced from 3126 to 151, which decreased the crystal strength of HfO2 film by 96%. The atomic force microscope (AFM) analysis of the film surface showed that the film roughness has decreased from 1.94 nm to 0.434 nm. Moreover, whilst using the Scanning Electron Microscope (SEM) for film surface observation, it resulted in a surface flattening trend. This significant result is the verification of the method's feasibility.

    中文摘要 i Abstract ii 致謝 iii 目錄 iv 圖目錄 vi 表目錄 ix 第一章 緒論 1 1-1前言 1 1-2研究目的與動機 5 第二章 基礎理論與文獻回顧 7 2-1原子層沉積技術工作原理 7 2-1-1化學氣相沉積法 7 2-1-2原子層沉積法 9 2-1-3電漿輔助原子沉積系統(PEALD) 14 2-2 光學薄膜之基本要求 16 2-3文獻探討 18 第三章 實驗方法與使用儀器設備 24 3-1實驗方法 24 3-1-1 實驗流程 24 3-1-2 實驗步驟 25 3-2製程設備原理與條件 30 3-3量測儀器介紹與原理 32 3-3-1紫外光/可見光/近紅外光光譜儀 32 3-3-2橢圓偏振儀(Ellipsometer) 33 3-3-3掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 34 3-3-4 X射線光電子能譜儀 35 (X-ray photoelectron spectroscopy, XPS) 35 3-3-5原子力顯微鏡(Atomic Force Microscope, AFM) 36 3-3-6 X光繞射儀(X Ray Diffractometer, XRD) 37 第四章 實驗結果與討論 38 4-1 HfO2薄膜之品質提升 38 4-2 HfO2薄膜之抑制結晶 46 第五章 結論 57 參考文獻 58   圖目錄 圖1-1 3D感測器[2] 1 圖1-2微陣列透鏡[4] 2 圖1-3自由曲面元件[5] 3 圖1-4 3D光學元件[6] 3 圖1-5(a)PVD沉積和(b)ALD沉積在半球透鏡上的示意圖[7] 4 圖1-6光學製造技術之尺寸與精度分布[8] 5 圖2-1 PE-CVD示意圖[9] 8 圖2-2 (1) PVD (2) CVD (3) ALD 示意圖 10 圖2-3使用ALD沉積的材料[12] 11 圖2-4 ALD窗口 12 圖2-5 ALD製程循環的一個週期[16] 13 圖2-6電漿製程擴展ALD窗口示意圖 15 圖2-7 (A)直接型(B)遠程型(C)自由基增強型 PE-ALD技術[19] 15 圖2-8 TH-ALD與PE-ALD在不同溫度下的GPC [22] 19 圖2-9 XPS碳、氮雜質分析圖[27] 20 圖2-10 TH-ALD與PE-ALD的結晶強度、粗糙度關係[23] 21 圖2-11 HfO2不同循環次數的結晶強度[23] 22 圖2-12 HfO2不同循環次數的薄膜粗糙度[23] 22 圖2-13 TiO2/Al2O3其結晶強度 23 圖2-14 TiO2/Al2O3其AFM分析 23 圖3-1實驗流程圖 24 圖3-2 HfO2製程循環1 cycle參數示意圖 26 圖3-3 SiO2製程循環1 cycle參數示意圖 26 圖3-4原子層沉積設備 30 圖3-5機械式幫浦 30 圖3-6機台架構示意圖 31 圖3-7 UH4150光譜儀 32 圖3-8光譜儀反射式光路圖 32 圖3-9橢圓偏振儀[28] 33 圖3-10橢圓偏振儀示意圖 33 圖3-11掃描式電子顯微鏡型 34 圖3-12 X射線光電子能譜儀 35 圖3-13 XPS之工作原理[29] 35 圖3-14原子力顯微鏡 36 圖3-15原子力顯微鏡示意圖[30] 36 圖3-16 X光繞射儀 37 圖4-1熱製程在不同製程溫度下n、k光譜圖 38 圖4-2電漿製程在不同製程溫度下n、k光譜圖 39 圖4-3亞穩態O原子的界面反應概念圖[27] 40 圖4-4熱製程、O2電漿製程、O2/Ar電漿製程n、k光譜圖 41 圖4-5 XPS碳元素分析(a) O2 plasma (b) O2/Ar plasma 42 圖4-6不同參數其n、k光譜圖 44 圖4-7反射率光譜圖 44 圖4-8 XRD量測不同製程溫度下其結晶強度 46 圖4-9 XRD量測不同製程方式其結晶強度 47 圖4-10 XRD量測不同cycle數其結晶強度 48 圖4-11 AFM量測不同厚度其平均粗糙度 49 圖4-12 SEM量測不同厚度其薄膜表面 50 圖4-13抑制薄膜結晶示意圖 51 圖4-14 Macleod模擬反射率光譜圖 52 圖4-15 XRD量測HfO2/SiO2不同抑制膜層數其結晶強度 53 圖4-16 AFM量測HfO2/SiO2不同抑制膜層數其平均粗糙度變化 54 圖4-17 SEM量測HfO2/SiO2不同抑制膜層數其薄膜表面 55   表目錄 表2-1近年來ALD之薄膜相關文獻 18 表3-1實驗使用之氣體與藥品規格 26 表3-2熱製程參數 27 表3-3電漿製程參數 28 表3-4實驗分析目的 29 表4-1熱製程與O2電漿製程之n、k比較 40 表4-2熱製程、O2電漿製程、O2/Ar電漿製程之n、k比較 41 表4-3 O2 plasma與O2/Ar plasma的XPS元素分析表 42 表4-4不同參數其n、k比較 43 表4-5不同溫度下熱製程之結晶強度 46 表4-6不同cycle數其結晶強度與平均粗糙度 48 表4-7 HfO2/SiO2插入cycle數 53  

    [1] Sensing 5.0趨勢下之感測技術應用方向
    Available: https://reurl.cc/qgZdNN
    [2] 3D感測技術發展與應用趨勢/大和有話說
    Available: https://reurl.cc/a9kM8D
    [3] 詳解黑科技「結構光」,第三種測量方法
    Available: https://kknews.cc/zh-tw/tech/r94oq34.html
    [4] 微陣列透鏡
    Available: https://reurl.cc/gW0n34
    [5] Brad Aitchison, Michael J. Cumbo. “Optical Design and Fabrication.” Deposition and fabrication, 310.1210 (2017).
    [6] Dr. Wolfgang Ebert. “Atomic Layer Deposition for Coating of Complex 3D Optics.” Optik & Photonik, 12(3), 42–45. (2017).
    [7] Kristin Pfeiffer, Ulrike Schulz. “Antireflection Coatings for Strongly Curved Glass Lenses by Atomic Layer Deposition Coatings.” Coatings, 7(8), 118. (2017).
    [8] 精密光學工程技術發展
    Available: https://reurl.cc/vqmDWN
    [9] 俊尚科技-CVD鍍膜技術
    Available: https://www.junsun.com.tw/zh/technology/cvd#mpcvd
    [10] J. Vac. Sci. Technol. “History of atomic layer deposition and its relationship with the American Vacuum Society.” Surfaces, and Films, 31(5), 050818. (2013).
    [11] Leskelä, M., & Ritala, M. “Atomic layer deposition (ALD): from precursors to thin film structures.” Thin Solid Films, 409(1), 138–146. (2002).
    [12] Peter M. Martin. “Atomic Layer Deposition. Handbook of Deposition Technologies for Films and Coatings.” Published by Elsevier Inc, 364–91. (2010).
    [13] Kim, H. “Characteristics and applications of plasma enhanced-atomic layer deposition.” Thin Solid Films, 519(20), 6639–6644. (2011).
    [14] Seppälä, Sanni. “Atomic Layer Deposition of Zirconium Oxide and Rare Earth Oxides from Heteroleptic Precursors.” Faculty of Science, University of Helsinki, Doctoral dissertation, Finland (2019).
    [15] Gregory N. Parsons,Steven M. George and Mato Knez. “Progress and future directions for atomic layer deposition and ALD-based chemistry.” MRS Bulletin, 36(11), 865–871. (2011).
    [16] 國家實驗研究院-科普講堂
    Available: https://reurl.cc/EnX7X1
    [17] Kariniemi M., Niinistö J., Vehkamäki M., Ritala M. “Conformality of remote plasma-enhanced atomic layer deposition processes.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 30(1), 01A115. (2012).
    [18] ALD設備與產業展望
    Available: https://reurl.cc/6aL2NV
    [19] J. Vac. Sci. Technol. “Status and prospects of plasma-assisted atomic layer deposition.” Journal of Vacuum Science & Technology A, 37(3), 030902. (2019).
    [20] 李正中,¬「薄膜光學與鍍膜技術(第八版)」,藝軒圖書出版社 (2016).
    [21] I. Langmuir. “Oscillations in ionized gases” Proceedings of the National Academy of Sciences of the United States of America, vol. 14, 627. (1928).
    [22] Kyoung-Mun Kim, Jin Sub Jang. “Optical and Electrical Properties of HfO2 Thin Films Deposited at Low-Temperature Using Plasma-Enhanced Atomic Layer.” Materials, 13(9), 2008. (2020).
    [23] Wei, Y., Xu, Q., Wang, Z., Liu, Z., Pan, F., Zhang, Q., & Wang, J. “Growth properties and optical properties for HfO2 thin films deposited by atomic layer deposition.” Journal of Alloys and Compounds, 735, 1422–1426. (2017).
    [24] Jeon H and Won Y. “The reaction pathways of the oxygen plasma pulse in the hafnium oxide atomic layer deposition process Appl.” Applied Physics Letters, 93(12), 124104. (2008).
    [25] Kitajima T, Nakano T and Makabe T, “Increased O(D1) metastable density in highly Ar-diluted oxygen plasmas Appl.” Applied Physics Letters, 88(9). (2006).
    [26] Kitajima T, Nakano T and Makabe T. “Increased O(D1) metastable flux with Ar and Kr diluted oxygen plasmas and improved film properties of grown SiO2 film.” Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 26(5), 1308–1313. (2008).
    [27] Takeshi Kitajima, Hidemichi Minowa and Toshiki Nakano, “Enhanced interfacial reaction of precursor and low temperature substrate in HfO2 atomic layer deposition with highly Ar diluted O2 plasma.” Published by IOP Publishing LtdJournal of Physics Communications, 4(9), 095013. (2020).
    [28] SEN research 4.0
    Available: https://reurl.cc/mLZnlV
    [29] X-ray photoelectron spectroscopy.
    Available: https://zh.wikipedia.org/wiki/X-ray_photoelectron_spectroscopy
    [30] 原子力顯微鏡原理
    Available: http://web1.knvs.tp.edu.tw/AFM/ch4.htm
    [31] G E Testoni, W Chiappim, R S Pessoa, M A Fraga. “Influence of the Al2O3 partial-monolayer number on the crystallization mechanism of TiO2 in ALD TiO2/Al2O3 nanolaminates and its impact on the material properties.” Journal of Physics D: Applied Physics, 49(37), 375301. (2016).
    [32] Zhigang Xiao, Kim Kisslinger, “Comparison of Hafnium Dioxide and Zirconium Dioxide Grown by Plasma-Enhanced Atomic Layer Deposition for the Application of Electronic Materials.” Crystals, 10(2), 136 (2020).

    QR CODE
    :::