跳到主要內容

簡易檢索 / 詳目顯示

研究生: 葉俞佑
Yu-Yu Yeh
論文名稱: Estimation in Copula-Based Markov Models under Weibull Distributions
指導教授: 孫立憲
Li-Hsien Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 統計研究所
Graduate Institute of Statistics
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 57
中文關鍵詞: 馬可夫模型觀察Fisher信息矩陣韋伯分佈指數分配
外文關鍵詞: Survival-Gumbel copula, observed Fisher information matrix
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們提出了基於 copula 的馬可夫模型的估計問題,因為在實踐中,連續數據通常具有相關性結構。在這個項目中,我們研究了 survival-Gumbel copula,其邊際分佈是韋伯分佈。我們獲得似然函數以及最大似然估計量。另外,為了解決區間估計,我們用三個觀察 Fisher 信息矩陣估計標準誤差。在模擬研究中,通過覆蓋概率比較三種方法哪一種更適合所提出的模型。最後,在實證研究中,分析了從 2005/1/1 到 2017/1/1 的每日收盤價 VIX 及在西班牙醫院開展手術的結直腸癌患者進行說明。特別是,我們研究了 VIX 數據的兩個邊際分佈,即韋伯分佈和指數分佈。


    We propose the estimation problem for a copula-based Markov model since in practice, serially data often has the dependent structure. In this project, we study the survival-Gumbel copula with the marginal distribution being the Weibull distribution. The likelihood function and the maximum likelihood estimators (MLEs) are obtained. In addition, in order to solve the interval estimation, we estimate the standard errors (SEs) with the three observed Fisher information matrices. The comparison of the three methods for investigating which one is more suitable for the proposed model in terms of the coverage probability through the simulation study. Finally, in the empirical study, the daily close VIX from 2005/1/1 to 2017/1/1 and the patients with colorectal cancer who have operations in a hospital in Spain are analyzed for illustration. In particular, we study two marginal distributions for the data, which are the Weibull distribution and the exponential distribution.

    Contents 1 Introduction 1 2 Copula-based Markov model 3 2.1 Weibull distribution 3 2.2 Copula function 4 2.3 Model assumption 6 2.4 The likelihood function of the survival-Gumbel copula 7 2.5 Interval estimation 8 3 Simulation study 11 3.1 Simulation methods 11 3.2 Simulation results 12 4 Empirical study 23 4.1 Data description 23 4.2 Empirical result 24 4.3 Other Empirical result 28 5 Conclusion 32 Appendix 33 Reference 42

    Reference
    [1] Carter, C. K., Kohn, R. (1994) Markov chain Monte Carlo in conditionally Gaussian state space models. Biometrika, 83, 589-601.
    [2] Darsow, W. F., Nguten, B., Olsen, E. T. (1992) Copulas and Markov Processes. Illinois Journal of Mathematics,36,600−642.
    [3] Domma, F., Giordano, S., Francesco, P. P. (2009). Statistical modeling of temporal dependence in financial data via a copula function. Communications in Statistics-Simulation and Computation 38:703–728.
    [4] Emura, T. Long, T. H., Sun, L. H. (2017) R routines performing estimation and statistical process control under copula-based time series models. Communications in Statistics Simulation and Computation, 46(4), 3067-3087.
    [5] Frees, E. W., Valadez, E. (1998) Understanding the relationships using copulas. North American Actuarial Journal, 2, 1-25.
    [6] Gelman, A., Rubin, D. (1992) Inference from Iterative simulation using Multiple sequences. Statistical Science, 7, 457-473.
    [7] Kim JM, Hwang SY (2017). Directional dependence via Gaussian copula beta regression model with asymmetric GARCH marginals. Communications in Statistics Simulation and Computation, 46(10), 7639-7653.
    [8] Kim JM, Baik J (2018a), Anomaly detection in sensor data, The Korean Reliability Society, Journal of Applied Reliability 18(1): 20-32.42
    [9] Kim JM, Baik J (2018b), Change point detection by copula conditional distributions, manuscript.
    [10] Joe,H.(1997) Multivariate Models and dependence. Chapman & hall.
    [11] Long, T. H., Emura, T. (2014) A control chart using copula-based Markov chain models. Journal of the Chinese Statistical Association , 52(4), 466-496.
    [12] Ly, A., Marsman, M., Verhagen, A., Grasman, R., & Wagenmakers, E.-J. (2015). A tutorial on Fisher information. Journal of Mathematical Psychology, (submitted for publication).
    [13] M. Kok, J. Dahlin, T. B. Scho¨n, A. Wills, Newton-based maximum likelihood estimation in nonlinear state space models, Proc. 17th IFAC Symp. Syst. Identificat., pp. 969-974, Oct. 2015.
    [14] Nelsen, R. B. (2006) An Introduction to Copulas, 2nd Edition. Springer Series in Statistics, Springer-V erlag : NewY ork.
    [15] P. Zangari, An improved methodology for measuring VaR, Risk Metrics Monitor, 2nd quarter, Reuters/J.P. Morgan, 7–25 (1996).
    [16] R development Core Team (2014) R: a language and environment for statistical computing. Foundation for Statistical Computing, R version 3.2.1.
    [17] Ross, S. M. (2006) Simulation,4th Edition. Elevier.
    [18] Otilia Boldea and Jan R. Magnus (2009) Maximum likelihood estimation of the multivariate normal mixture model.43
    [19] Shih-Hao Huang, Mong-Na Lo Huang, Kainam Thomas Wong, Tzu-Chiang Tseng (2015) Copula – to model multi-channel fading by correlated but arbitrary Weibull marginals, giving a closed-form outage probability of selection combining reception.
    [20] Emura T, Murotani K (2015) An algorithm for estimating survival under a copula-based dependent truncation model, TEST 24(4):734-51
    [21] Sun LH, Lee CS, Emura T (2018) A Bayesian inference for time series via copula based Markov chain models, Commun Stat-Siml, doi:10.1080/03610918.2018.1529241
    [22] William Q. Meeker, Luis A. Escobar (1998) Statistical methods for reliability data.
    [23] Gonzalez JR, Fernandez E, Moreno V, et al. (2005) Sex differences in hospital readmission among colorectal cancer patients. J Epidemiol Commun Health; 59:506–511.
    [24] Rondeau V, Gonzalez JR, Mazroui Y, et al. (2015) R frailtypack: general frailty models: shared, joint and nested frailty models with prediction. CRAN, R package version 2.7.5: CRAN: The Comprehensive R Archive Network.
    [25] Emura T, Long TH, Sun LH (2017), R routines for performing estimation and statistical process control under copula-based time series models, Communications in Statistics - Simulation and Computation, 46 (4): 3067-87

    QR CODE
    :::