跳到主要內容

簡易檢索 / 詳目顯示

研究生: 章坤瀧
Kung-Long Zhang
論文名稱: 複雜背景之 3 維深度手勢辨識與追蹤
Three-Dimensional Hand Recognition and Tracking with Depth Information under Complicated Environments
指導教授: 蔡宗漢
Tsung-Han Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 71
中文關鍵詞: 手勢辨識雙鏡頭深度動態手勢
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著近幾年來浮空手勢操作的發展,人們逐漸從傳統鍵盤與滑鼠
    的操作介面,轉變為更符合人類的直覺操作模式,如:手勢操作。本
    論文提出一個基於三維深度的手勢辨識與追蹤演算法,本系統使用低
    成本的雙攝影機來計算深度影像,不但可以提供手勢的深度資訊,也
    能在嚴峻複雜的背景中正常運作。
    目前大部分的手勢偵測演算法採用膚色或運動量值做為前處理
    步驟,但只透過膚色濾除和運動量無法在含有相近顏色背景下維持此
    系統的功能性,本論文提出一個適應性的膚色深度過濾,此方法可以
    有效分離出系統需要的手部區塊,也能改善追蹤演算法的成效。最後
    透過深度資訊完成深度動態手勢辨識,經過多位使用者測試,手勢方
    向移動功能準確率 93.7%,深度推拉功能準確率 95.6%,手勢旋轉功
    能準確率 94.5%,動態手勢準確率 85.92%。


    Accompany with mid-air control system have been developed in
    recent years, people gradually change their usage from tradition
    keyboard and mouse to the intuitive manner, like hand gesture control.
    This thesis proposed a hand recognition and tracking with depth
    information. We use stereo camera to capture stereo image and
    calculate depth map. The system not only can provide depth
    information but also can work under critical backgrounds.
    Most methods of hand detection apply skin filter or motion filter
    as one of pre-processing. However, only applying skin filter or motion
    filter as segmentation step can’t maintain system function correct
    while background pixels are close to skin color. In the proposed, we
    adopt adaptive depth filter which can separate foreground which
    improve performance on tracking algorithm. We also proposed
    dynamic gesture recognition by using depth data. Our accuracy of
    direction function is 93.7%, accuracy of push/pull function is 95.6%,
    accuracy of rotation function is 93.7%, accuracy of dynamic function
    is 85.92%.

    摘要................................................................................................................................ I ABSTRACT ............................................................................................................... II TABLE OF CONTENTS ....................................................................................... III LIST OF FIGURES ............................................................................................... IIV LIST OF TABLES ................................................................................................... VI CHAPTER 1 Introduction ...................................................................................... 1 1.1 BACKGROUND .............................................................................................. 1 1.2 MOTIVATION ............................................................................................... 4 1.3 THESIS ORGANIZATION .............................................................................. 5 CHAPTER 2 Related Works ................................................................................... 6 2.1 OVERVIEW ................................................................................................... 6 2.2 HAND GESTURE RECOGNITION ................................................................. 7 2.3 DEPTH INFORMATION EXTRACTION ....................................................... 10 2.3.1. Kinect ...................................................................................................... 10 2.3.2. Stereo Matching ...................................................................................... 12 2.4 HAND TRACKING ....................................................................................... 14 CHAPTER 3 Proposed Algorithm ....................................................................... 17 3.1 OVERVIEW ................................................................................................. 17 3.2 PRE-POCESSING ......................................................................................... 19 3.3 DEPTH EXTRACTION ................................................................................. 23 3.4 SKIN PROCESSING ..................................................................................... 30 3.5 ADAPTIVE DEPTH DYNAMIC THRESHOLD .............................................. 33 3.6 HAND DETECTION AND TRACKING .......................................................... 36 3.7 GESTURE RECOGNITION ........................................................................... 41 CHAPTER 4 Experimental Results and Analysis............................................... 45 CHAPTER 5 Conclusion ....................................................................................... 54 REFERENCES ......................................................................................................... 56

    [1] L. Lacassagne, M. Milgram, P. Garda, “Motion detection, labeling,
    data association and tracking, in real-time on RISC computer”,
    IEEE Image Analysis and Processing, 1999. Proceedings.
    International Conference on, pp. 520-525.
    [2] M. Turk, Handbook of Virtual Environment Technology. Lawrence
    Erlbaum Associates, Inc., 2001.
    [3] C. Manresa, J. Varona, R. Mas, Francisco J. Perales(2005) “Hand
    Tracking and Gesture Recognition for Human-Computer
    Interaction”, Journal of Electronic Letters on Computer Vision
    and Image Analysis, pp. 96-104.S. Soro and W. Heinzelman, “A
    survey of visual sensor networks,” Adv. Multimedia, pp. 1–22, May
    2009.
    [4] B. Yi, F.C. Harris, L. Wang, Y. Yan (2005) “Real-Time Natural
    Hand Gestures”, Proceedings of IEEE Computing in Science &
    Engineering and the American Institute of Physics, vol. 7, no. 3,
    pp. 92-97, May , 2005.
    [5] X. Deyou, “A neural approach for hand gesture recognition in
    virtual reality driving training system of SPG,” Proc. of
    International Conference on Pattern Recognition, ICPR’06 , pp.
    519-522, 2006.
    [6] D. B. Nguyen, S. Enokida, and E. Toshiaki, “Real-time hand
    tracking and gesture recognition system,” IGVIP’05, CICC, pp.
    362-368, 2005.
    [7] M. Elmezain, A. Al-Hamadi, and B. Michaelis, “Real-time capable
    system for hand Motion detection, labeling, data association and
    tracking gesture recognition using hidden markov models in stereo
    color image sequences,” The Journal of WSCG’08, Vol. 16(1), pp.
    65-72, 2008.
    [8] P. Kumar, S. S. Rautaray, and A. Agrawal, “Hand data glove: A
    new generation real-time mouse for human-computer interaction,”
    International Conference on Recent Advances in Information
    Technology (RAIT),2012, pp. 750-755.
    [9] A. Erol, G. Bebis, M. Nicolescu, R. D. Boyle, and X. Twombly,
    “Vision-based hand pose estimation: A review,” Comput. Vis.
    Image Understanding, vol. 108, no. 1–2, pp. 52–73, Oct. 2007.
    [10] J. P. Wachs, M. Kolsch, H. Stern, and Y. Edan, “Vision-based
    handgesture applications,” Commun. ACM, vol. 54, no. 2, pp. 60–
    71, Feb. 2011.
    [11] S. Mitra and T. Acharya, “Gesture recognition: A survey,” IEEE
    Transactions on Systems, Man, and Cybernetics, Part C
    (Applications and Reviews), vol. 37, no. 3, pp. 311–324, Apr. 2007.
    [12] R. W. Rahmat, Z. H. Al-Tairi, M. I. Saripan, and P. S. Sulaiman,
    “Removing Shadow for Hand Segmentation Based on Background
    Subtraction,” in International Conference on Advanced Computer
    Science Applications and Technologies (ACSAT), 2012,PP.
    481-485.
    [13] Tsung-Han Tsai, Chih-Chi Huang and Kung-Long Zhang,
    “Embedded Virtual Mouse System by Using Hand Gesture
    Recognition”, IEEE International Conference on Consumer
    Electronics - Taiwan (ICCE-TW), pp.352-353, June, 2015.
    [14] Q. Chen, N. D. Georganas, and E. M. Petriu, “Hand Gesture
    Recognition Using Haar-Like Features and a Stochastic
    Context-Free Grammar,” IEEE Transactions on Instrumentation and
    Measurement, vol. 57, No.8, pp.1562-1571, August, 2008.
    [15] Po-Kuan Huang, Tung-Yang Lin, Hsu-Ting Lin, Chi-Hao Wu,
    Ching-Chun Hsiao, Chao-Kang Liao, Peter Lemmens, “Real-time
    stereo matching for 3D hand gesture recognition,” in IEEE
    International SoC Design Conference (ISOCC), 2012, pp.29-32.
    [16] Cheng-Yuan Ko, Chung-Te Li, Chien Wu, and Liang-Gee Chen,
    “3D hand localization by low cost webcams,” IS&T/SPIE
    Electronic Imaging (IS&T/SPIE EI), Jan, 2013.
    [17] Cheng Tang, Yongsheng Ou, Guolai Jiang, Qunqun Xie, Yangsheng
    Xu, “Hand tracking and pose recognition via depth and color
    information,” in IEEE International Conference on Robotics and
    Biomimetics (ROBIO), 2012, pp.1104-1109.
    [18] Ryosuke Araki, Seiichi Gohshit and Takeshi Ikenaga, “Real-Time
    Both Hands Tracking Using CAMshift with Motion Mask and Probability Reduction by Motion Prediction,” Proc. Asia-Pacific Signal & Information Processing Association Annual Summit and Conference (APSIPA ASC), 2012.
    [19] Chenyang Chen, Mingmin Zhang, Kaijia Qiu, Zhigeng Pan, “Real-Time Robust Hand Tracking Based on CAMshift and Motion Velocity,” IEEE International Conference on Digital Home (ICDH), pp.20-24, 2014.
    [20] C. C. Hsieh, D. H. Liou, and D. Lee, “A Real Time Hand Gesture
    Recognition System Using Motion History Image ,” in IEEE
    International Conference on Singal Processing Systems (ICSPS),
    vol. 2, pp.394-398, July, 2010.
    [21] L. Lin, Y. Cong, and Y. Tang, “Hand gesture recognition using
    RGB-D cue”, IEEE International Conference on Information and
    Automation (ICIA),pp. 311-316, June, 2012.
    [22] Youwen Wang, Cheng Yang, Xiaoyu Wu, Shengmiao Xu, Hui Li,
    “Kinect Based Dynamic Hand Gesture Recognition Algorithm
    Research,” in IEEE International Conference on Intelligent
    Human-Machine Systems and Cybernetics (IHMSC), vol.1,
    pp.274-279, 2012.
    [23] Yongquan Xia, Longyuan Guo, Min Huang, Rui Ma, “A New Fast
    Matching Approach of Large Disparity Stereopair,” in Congress on
    Image and Signal Processing, 2008, pp.286-290.
    [24] Luigi Di Stefano, Massimiliano Marchionni, Stefano Mattoccia, “A
    fast area-based stereo matching algorithm,” Image and Vision
    Computing, vol.22, no.12, pp.983-1005, 2004.
    [25] L. T. Cheng, W. K. Chih, A. Tsai, W. C. Chih, “Hand posture
    recognition using Hidden Conditional Random Fields,” Advanced
    Intelligent Mechatronics, 2009. AIM 2009. IEEE/ASME
    International Conference on, pp.1828-1833, 14-17 July, 2009.
    [26] https://github.com/Balaje/OpenCV/blob/master/haarcascades/hand.x
    ml.
    [27] P. Modler, T. Myatt, “Recognition of separate hand gestures by
    Time-Delay Neural Networks based on multistate spectral image
    patterns from cyclic hand movements, ” Systems, Man and
    Cybernetics, 2008. SMC 2008. IEEE International Conference on,
    pp.1539-1544, 12-15 Oct., 2008.
    [28] Daniel B. Dias, Renata C. B. Madeo, T. Rocha, Helton H. Biscaro,
    Sarajane M. Peres, "Hand movement recognition for Brazilian Sign
    Language: A study using distance-based neural networks,” Neural
    Networks, IEEE - INNS - ENNS International Joint Conference on,
    pp. 697-704, 2009.
    [29] A. Bellarbi, S. Benbelkacem, N. Z. henda, and M. Belhocine,“Hand
    Gesture Interaction using Color-based Method for Tabletop Interfaces,” in IEEE International Symposium on Intelligent Signal
    Processing (WISP), pp.1-6, Sept, 2011.
    [30] J. Zaletelj, J. Perhavc, and J. F. Tasic, “Vision-based
    Human-computer Interface using Hand Gestures,” in International
    Workshop on Image Analysis for Multimedia Interactive Services
    (WIAMIS'07), 2007, pp. 41.
    [31] S. S. Rautaray, and A. Agrawal, “Design of Gesture Recognition
    System for Dynamic User Interface Analysis,” in IEEE International
    Conference on Technology Enhanced Education (ICTEE), pp. 1-6,
    Jan, 2012.
    [32] Youwen Wang, Cheng Yang, Xiaoyu Wu, Shengmiao Xu, Hui Li,
    “Kinect Based Dynamic Hand Gesture Recognition Algorithm
    Research,” in IEEE International Conference on Intelligent
    Human-Machine Systems and Cybernetics (IHMSC), vol.1,
    pp.274-279, 2012.
    [33] Dan Xu, Yen-Lun Chen, Chuan Lin, Xin Kong, Xinyu Wu,
    “Real-time dynamic gesture recognition system based on depth
    perception for robot navigation,” in IEEE International Conference
    on Robotics and Biomimetics (ROBIO), pp.689-694, 2012.
    [34] H. X. Duan, Q. Y. Zhang, and W. Ma, “An approach to dynamic
    hand gesture modeling and real-time extraction,” in IEEE
    International Conference on Communication Software and
    Networks (ICCSN), pp.139-142, May, 2011.
    [35] A. Aksaç, O. Öztürk and T. Özyer, “Real-time Multi-Objective
    Hand Posture/Gesture Recognition by Using Distance Classifiers
    and Finite State Machine for Virtual Mouse Operations” in IEEE
    International Conference on Electrical and Electronics Engineering
    (ELECO) 7th, pp.457-461, Dec, 2011.
    [36] E. Foxlin. Motion tracking requirements and technologies.
    Handbook of Virtual Environment Technology, pages 163–210,
    2002.
    [37] T. Takahashi, and F. Kishino, “Hand Gesture Coding based on
    Experiments using a Hand Gesture Interface Device”. SIGCHI Bull.
    vol. 23, no. 2, pp. 67-74, 1991.
    [38] C. Lee, and Y. Xu, “Online Interactive Learning of Gestures for
    Human/Robot Interfaces”. In IEEE International Conference on
    Robotics and Automation, vol. 4, pp. 2982-2987, Apr, 1996.

    QR CODE
    :::