| 研究生: |
許寶月 Pao-Yueh Hsu |
|---|---|
| 論文名稱: |
Actinomycetes H12所產轉麩胺酸醯胺基酶之生產、特性及加工製程之探討 Production, characterization and procession of transglutaminase produced by Actinomycetes H12 |
| 指導教授: |
黃雪莉
Shir-Ly Huang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生醫理工學院 - 生命科學系 Department of Life Science |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | Actinomycetes H12 、轉麩胺酸醯胺基酶 、鈷六十 |
| 外文關鍵詞: | Actinomycetes H12, transglutaminase, Co 60 |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
本研究由50多個土壤樣品中分離出15,000株放線菌,其中以Actinomycetes H12有最高之轉麩胺酸醯胺基酶酵素活性。Actinomycetes H12於最適化液態培養條件下,培養可得轉麩胺酸醯胺基酶產量2.7 U/ml,較原始培養(TSB)條件下之轉麩胺酸醯胺基酶產量提高1.4倍,較S. ladakanum CCRC 12422之轉麩胺酸醯胺基酶高1.8倍,而與日本生產轉麩胺酸醯胺基酶之菌株Streptoverticillium sp. S-8112 產量2.5 U/ml相似。
Actinomycetes H12 之轉麩胺酸醯胺基酶蛋白質特性分析:其最適作用溫度40℃,熱穩定性在50℃下加熱30分鐘仍保有50%活性,最適作用pH 6-8。此轉麩胺酸醯胺基酶活性會受到Cu2+、 Zn2+明顯之抑制,但一價離子、Fe3+與Ca2+則不影響其活性。
Actinomycetes H12發酵槽液態培養至40-48小時,此時其酵素分泌至胞外比率仍低,利用此特性將發酵液高速離心後,可直接回收帶有酵素之菌泥,不經純化下其收率為85%,經冷凍乾燥後其活性不變,但發現有Escherichia coli,因之再輔以Co 60-10kGy照射殺死病原菌及生產菌,然其活性下降至65%,即使照射時加入抗氧化劑(β-carotene, ascorbic acid)亦不能改善提高其殘留活性。
We isolated 15,000 Actinomycetes strains from over 50 soil samples, one isolated strain H12 have the highest TGase activity. The TGase activity (2.7U/ml) under the optimal conditions was about 1.4-fold than the TSB medium condition and 1.8-fold than the TGase from S. ladakanum CCRC 12422, but it is similar to the enzyme from Streptovertecillium sp. S-8112 (2.5 U/ml).
The crude TGase from Actinomycetes H12 had the optimum pH and temperature being pH 6-8 and 40℃, respectively. The stable pH range was 5-9 and thermal stability of the crude TGase remained 50% activity after treatment at 50℃ for 30 min. The metal ions, Cu2+ and Zn2+, inhibited the activity of TGase. The addition of monovalence, Fe3+ and Ca2+ did not affect the activity of TGase.
When Actinomycetes H12 was cultured on fermentor after 40-48 hr, the extracellular TGase still low. So we centrifuged the culture fluid in a single step and with high yields (85%), then the TGase activity didn’t decrease after freeze-dry. There were contaminants in products, therefore we treatment with Co 60-10 kGy killing germs and Actinomycetes H12, but the enzyme activity is decreased (65%). It didn’t improve to raise the activity, even thought added β-carotene and ascorbic acid.
參考文獻
潘子明。2002。食品生物技術介紹。台灣農業化學會,pp.1-36。
聶方珮,謝榮峰,江善宗。2003。微生物轉麩胺酸醯胺基酶之生產條件及對大豆蛋白成膠之影響。台灣農業化學與食品科學,41(1): 37-44。
朱文深。1998。微生物轉榖氨醯胺酶之開發與應用。食品工業月刊,30(4): 30-39。
朱文深。2003。微生物轉榖氨醯胺酶之開發。中國農業化學會,113-130。
張紅城,彭志英,越謀明,邱慧霞。1998。轉榖氨醯胺酶在食品中的應用。食品與發酵工業,24(3): 73-76。
葉雅玟。2000。Streptoverticillium kentuckense CCRC 12429生產之麩醯基轉移酶純化、生化特性及應用。國立中興大學畜產系研究所碩士論文。
吳介文,蔡國珍,江善宗。1996。轉麩胺酸醯胺基酶生產菌株之篩選及影響其產量因子之探討。中國農業化學會誌,34(2): 228-240。
Ando, H., Adachi, M., Umeda, K., Matsuura, A. & Nonaka, M. (1989). Purification and characteristics of novel transglutaminase derived from microorganisms. Agric. Biol. Chem. 53: 2613-2617.
Brunner, F., Rosahl, S., Lee, J., Geiler, C., Kauppinen, S. & Scheel, D. (2002). Pep-13, a plant defense-inducing pathogen associated pattern from Phytophthora transglutaminase. EMBO J. 21: 6681-6688.
Candi, E., Melino, G., Mei, G., Tarcsa, E., Chung, S. I., Marekov, L. N. & Steinert, P. M. (1995). Biochemical, structural, and transglutaminase substrate properties of human loricrin, the major epidermal cornified cell envelope protein. J. Biol. Chem. 270: 26382-26390.
Dallabrida, S. M., Falls, L. A. & Farrell, D. H. (2000). Factor XⅢa supports microvascular endothelial cell adhesion and inhibits capillary tube formation in fibrin. Blood. 95: 2586-2592.
Day, N. & Keillor, J. W. (1999). A continuous spectrophotometric linked enzyme assay for transglutaminase activity. Anal. Biochem. 274: 141-144.
de Jong, G. A., Wijngaards, G., Boumans, H., Koppelman, S. J. & Hessing, M. (2001). Purification and substrate specificity of transglutaminases from blood and Streptoverticillium mobaraense. J. Agric. Food Chem. 49: 3389-3393.
Falcone, P. D., Serafini-Fracassini. D. & Duca, S. D. (1993). Comparative studies of transglutaminase activity and substrates in different organs of Helianthus tuberosus. J. Plant Physiol. 142: 265-273.
Folk, J. E. (1980). Transglutaminase. Annu. Rev. Biochem. 49: 517-531.
Folk, J. E. & Cole, P. W. (1966). Mechanism of action of Guinea Pig Liver transglutaminase. J. Biol. Chem. 241: 5518-5525.
Gerber, U., Jucknischke, U., Putzien, S. & Fuchsbauer, H. L. (1994). A rapid and simple method for the purification of transglutaminase from Streptoverticillium mobaraense. Biochem. J. 299: 825-829.
Ho, M. L., Leu, S. Z., Hsien, J. F. & Jiang, S. T. (2000). Technical approach to simplify the purification method and characterization of microbial transglutaminase produced from Streptoverticillium ladakanum. J. Food Sci. 65: 76-80.
Ikura, K., Yoshikawa, M., Sasaki, R. & Chiba, H. (1981). Incorporation of amino acids into food proteins by transglutaminase. Agric. Biol. Chem. 45: 2587-2592.
Ikura, K., Nasu, T., Yokota, H., Tsuchiya, Y., Sasaki, R. & Chiba, H. (1988). Amino acid sequence of guinea pig liver transglutaminase from its cDNA sequence. Biochemistry 27: 2898-2905.
Jiang, S. T. & Lee, J. J. (1992). Purification, characterization, and utilization of Pig plasma factor XⅢa. J. Agric. Food Chem. 40: 1101-1107.
Kanaji, T., Ozaki, H., Takao, T., Kawajiri, H., Ide, H., Motoki, M. & Shimonishi, Y. (1993). Primary structure of microbial transglutaminase from Streptoverticillium sp. strain s-8112. J. Biol. Chem. 268:11565-11572.
Kawai, M., Takehana, S. & Takagi, H. (1997). High-level expression of the chemically synthesized gene for microbial transglutaminase from Streptoverticillium in Escherichia coli. Biosci. Biotechnol. Biochem. 61: 830-835.
Kikuchi, Y., Date, M., Yokoyama, K., Umezawa, Y. & Matsui, H. (2003). Secretion of active-form Streptoverticillium mobaraense transglutaminase by Corynebacterium glutamicum: processing of the pro-transglutaminase by a cosecreted subtilisin-Like protease from Streptomyces albogriseolus. Appl. Environ. Microbiol. 69: 358-366.
Kim, S. Y., Chung, S. I. & Steinert, P. M. (1995). Highly active soluble processed forms of the TGase Ιenzyme in epidermal keratinocytes. J. Biol. Chem. 270: 18026-18035.
Kobayashi, K., Suzuki, S. I., Izawa, Y., Miwa, K. & Yamanaka, S. (1998). Transglutaminase in sporulating cells of Bacillus subtilis. J. Gen. Appl. Microbiol. 44: 85-91.
Labeda, D. P. & Shearer, M. C. (1986). Isolation of actinomycetes for biotechnological applications.
Lilley, G. R., Skill, J., Griffin, M. & Bonner, P. L. (1998). Detection of Ca2+-dependent transglutaminase activity in root and leaf tissue of monocotyledonous and dicotyledonous plants. Plant Physiol 117: 1115-1123.
Matheis, G. & Whitaker, J. R. (1987). Areview: enzymatic cross-linking of proteins applicable to foods. J. Food Biochem. 29: 309-327.
Margosiak, S. A., Dharma, A., Gonzales, A. P., Louie, D., & Kuehn, G. D. (1990). Identification of the large subunit of Ribulose 1,5- biophosphate Carboxylase/Oxygenase as a substrate for transglutaminase in Medicago sativa L. Plant physiol. 92: 88-96.
Mottahedeh, J. &Marsh, R. (1998). Characterization of 101-kDa transglutaminase from Physarum polycephalum and identification of LAV1-2 as substrate. J. Biol. Chem. 273: 29888-29895.
Nonaka, M., Tanaka, H., Okiyama, A., Motoki, M . & Matsuura, A. (1989). Polymerization of several proteins by Ca2+- independent transglutaminase derived from microorganism. Agric. Biol. Chem. 53: 2619-2623.
Ohtsuka, T., Umezawa, Y., Nio, N. & Kubota, K. (2001). Comparison of deamidation activity of transglutaminases. J. Food Sci. 66: 25-29.
Radek, J. T., Jeong, J. M., Murthy, S. N., Ingham, K. C. & Lorand, L. (1993). Affinity of human erythrocyte transglutaminase for a 42-kDa gelatin-binding fragment of human plasma fibronectin. Proc. Natl. Acad. Sci. 90: 3152-3156
Serafini-Fracassini, D., Del Duca, S. & Beninati, S. (1995). Plant transglutaminases. Phytochemistry 40: 355-365.
Singh, H. (1991) Modification of food proteins by covalent crosslinking. Trends in Food Science and Technology (review) pp196-200.
Tsai, G. J., Lin, S. M. & Jiang, S. T. (1996). Transglutaminase from Streptoverticillium ladakanum and application to minced fish product. J. Food Sci. 61: 1234-1238.
Washizu, K., Ando, K., Koikeda, S., Hirose, S., Matsuura, A., Takagi, H., Motoki, M. & Takeuchi, K. (1994). Molecular cloning of the gene for microbial transglutaminase from Streptoverticillium and its expression in Streptomyces lividans. Biosci. Biotechnol. Biochem. 58: 82-87.
Yasueda, H., Kumazawa, Y. & Motoki, M. (1994). Purification and characterization of a tissue-type transglutaminase from Red Sea Bream (Pagrus major). Biosci. Biotechnol. Biochem. 58: 2041-2045.
Yokoyama, K. I., Nakamura, N., Seguro, K. & Kubota, K. (2000). Overproduction of microbial transglutaminase in Escherichia coli, in vitro refolding, and characterization of the refolded form. Biosci. Biotechnol. Biochem. 64: 1263-1270.
Zhu, Y., Bol, J., Rinzema, A. & Tramper, J. (1995). Microbial transglutaminase- a review of its production and application in food processing. Appl. Microbiol. Biotechnol. 44: 277-282.
Zhu, Y., Bol, J., Rinzema, A., Tramper, J. & Wijngaards, G. (1999). Transglutaminase as a potential tool in developing novel protein foods. Agro-Food Industry Hi-Tech- pp8-10.