| 研究生: |
何維宏 Wei-Hong He |
|---|---|
| 論文名稱: |
渦輪葉片鍛造之模具最佳化設計 Mold optimization of forging turbine blade |
| 指導教授: |
葉維磬
Wei-Qing Yeh |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 渦輪葉片 、精密鍛造 、最佳化 |
| 外文關鍵詞: | optimization, turbune blade, precision forging |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文目的在利用MARC有限元素軟體,分析NACA 7415渦輪葉片鍛造加工之模具最佳化問題,以建立最佳模具外形。
首先,利用Wu[25] 實驗擠鍛成形所得之鍛件擠伸高度、凸緣直徑及成形負荷與MARC有限元素解比較,藉以驗證MARC分析鍛造加工問題的可靠性與妥適性。
再者,應用MARC有限元素分析軟體,結合最佳化軟體IMSL,以建立分析葉片鍛造加工問題之最佳化系統,以建立最佳化模具參數。基於不同目標函數及不同摩擦條件下,所獲得的最佳化解亦一併於本文中討論,包含鍛造葉片之誤差及材料應力分佈情形。
This article uses the finite element software MARC to analysis the optimization of NACA7415 turbine blade in forging process. In order to establish the best mold shape.
First, this article proves the trusty of the experiment[15] and the finite element results in axial-symmetry close-die forging process by using MARC analysis.
As well , we union the finite element software MARC and optimal math library IMSL to establish an optimal system of MARC to analyze the problem of blade in forging process. By setting different factors of goal function and friction, we will discuss the optimal results, include error of forging blade and stress distribution of material.
[ 1] L. B. Aksenov, N. R. Chitkara, W. Johnson, “Pressure and deformation in the plane strain pressing of circular section bar to form turbine blades,” Int. J. Mech. Sci. 17 (1975) 681-688.
[ 2] R. Hill, Mathematical Theory of Plasticity. Oxford University Press, London, 1950.
[ 3] W. Johnson, Proc. Third U.S. Natn. Cong. Appl. Mech., Brown University, Providence, p.571, 1958.
[ 4] B.S. Kang, N. Kim, S. Kobayashi, “Computer-aided perform design in forging of an airfoil section blade,” Int. J. Mach. Tools Manuf. 30 (1990) 43-52.
[ 5] G. Maccarini, C. Giardini, G. Pellegrini, and A. Bugini, “The influence of die geometry on cold extrusion forging operations: FEM and experimental results,” J. Mater. Process. Technol. 27 (1991) 227-238.
[ 6] Z. Wang, K. Xue, Y. Liu, “Backward UBET simulation of a blade,” J. Mater. Process. Technol. 65 (1997) 18-21.
[ 7] H. Ou, R. Balendra, “Preform design for forging of aerofoil sections using FE simulation,” J. Mater. Process. Technol. 80-81 (1998) 144-148.
[ 8] H. Ou, R. Balendra, “Die-elasticity for precision of aerofoil sections using finite element simulation,” J. Mater. Process. Technol. 76 (1998) 56-61
.
[ 9] M. Zhan, L. Yuli, Y. He, “Research on a new remeshing method for the 3D FEM simulation of blade forging,” J. Mater. Process. Technol. 94 (1999) 231-234.
[ 10] Z. M. Hu, T. A. Dean, “Aspect of forging of titanium alloys and the production of blade forms,” J. Mater. Process. Technol. 111 (2001) 10-19.
[11] X. Lu, R. Balendra, “Temperature-related errors on aerofoil section of turbine blade,” J. Mater. Process. Technol. 115 (2001) 240-244.
[12] X. Duan, T. Sheppard, “Shape optimization using FEA software: a V-shaped anvil as an example,” J. Mater. Process. Technol. 120 (2002) 426-431.
[13] X. Zhao, G. Zhao, G. Wang, and T. Wang, “Preform die shape design for uniformity of deformation in forging based on preform sensitivity analysis,” J. Mater. Process. Technol. 128 (2002) 25-32.
[14] M. Zhan, Y. Liu, H. Yang, “Influence of the shape and position of the perform in the precision forging of a compressor blade,” J. Mater.
Process. Technol. 120 (2002) 80-83.
[15] H. Ou, C. G. Armstrong, “Die shape compensation in hot forging of titanium aerofoil sections,” J. Mater. Process. Technol. 125-126 (2002) 347-352.
[16] L. Yuli, Y. He, Z. Mei, and F. Zengxiang, “A study of the influence of the friction conditions on the forging process of a blade with a tenon,” J. Mater. Process. Technol. 123 (2002) 42-46.
[17] H. Ou, C. G. Armstrong, M. A. Price, “Die shape optimization in forging of aerofoil sections,” J. Mater. Process. Technol. 132 (2003) 21-27.
[18] H. Ou, J. Lan, C. G. Armstrong, M. A. Price, “An FE simulation and optimization approach for the forging aeroengine components,” J. Mater. Process. Technol. 151 (2004) 208-216.
[19] “IMSL MATH/LIBRARY, User’s Manual, Fortran Subroutines for Mathematical Applications,” IMSL, Inc., Ver2.0, April, 1992, pp. 1030-1035.
[20] H. D. Hibbitt, P. V. Marcal, and J. R. Rice, “A Finite Element Formulation for Problems of Large Strain and Large Displacement,” Int. J. Solids Struct., Vol.6, pp.1069~1086,1970.
[21] R. M. McMeeking, and J. R. Rice, “Finite Element Formulations for Problems of Large Elastic-plastic Deformation,” Int. J. Solids Struct., Vol.11, pp.601~616,1975.
[22]“Theory and user information,”MARC Analysis Research Corporation. Volume A. Version 7.
[23]“Mentat Command Reference,”MARC Analysis Research Corporation. Version 3.1.
[24] “User Subroutines and special Routines,”MARC Analysis Research Corporation. Volume D. Version 3.1.
[25] Wu Chun-Yin and Hsu Yuan-Chuan, “The influence of die shape on the flow deformation of extrusion forging operations,” J. Mater. Process. Technol. 124 (2002) 67-76.
[26] 廖鴻賓, “MARC應用於冷鍛加工分析及其驗證分析” , 碩士論文, 國立中央大學機械工程研究所, 2003
[27] 楊文豹, “MARC應用於冷渦輪葉片鍛造之分析” , 碩士論文, 國立中央大學機械工程研究所, 2004
[28] 官愛蓮, “MARC應用於翼片鍛造之模具最佳化分析” , 碩士論文, 國立中央大學機械工程研究所, 2005
[29] http://www.aerospaceweb.org/question/airfoils/q0100.shtml