跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李岳峰
Yueh-Feng Li
論文名稱: 在多連結無線隨意行動網路上路徑的生命週期
On Route Lifetime in Multi-hop Mobile Ad-hoc Networks
指導教授: 許健平
Jang-Ping Sheu
曾煜棋
Yu-Chee Tseng
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 90
語文別: 英文
論文頁數: 26
中文關鍵詞: 生命週期離散式隨機移動模式無線隨意行動網路
外文關鍵詞: lifetime, discrete time random walk model, lad hoc network, MANET
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 無線隨意行動網路(MANET,Mobile Ad Hoc Networks) 是一種沒有事
    先建置基礎架構(infrastructure),而是由無線主機所臨時組成的網路,
    具有與傳統網路截然不同的特性,包括隨時可能改變的網路型態、沒有方向
    或範圍限制的移動和無法預測的流量負載等。由於無線隨意行動網路架設快
    速且機動性高的特點,可以運用在一些需要立即通訊的環境,像是災難現
    場、戰場、或是當基地台因某此因素(停電、地震等) 而無法使用時。
    由於沒有基地台(Base Station) 的架設,當兩主機之間想要互相通訊
    時,必須先建立好一條路徑,這條路徑是由一連串的節點所組成,負責轉送
    資料,此建立路徑的方法稱為繞徑協定(Routing Protocol)。目前已經有
    許多關於繞徑協定的研究被提出來。這些協定在選擇路徑時會根據一些準
    則,像是路徑的長度、品質、訊號強度、網路頻寬或是生命週期等等。本篇
    論文著重在生命週期這部份。因為節點可以自由移動,所以當路徑中某一個
    鍊結(Link) 因為兩端節點的移動而斷線時,這條路徑就無法使用而必須重
    新建立另一條路徑。生命週期代表了一條路徑保持連線,可以使用的時間。
    生命週期愈長,代表路徑的可靠性愈高。
    本篇論文提出了一種預估路徑生命週期的機制,給定一條路徑,根據路
    徑上每一個節點的位置,藉由隨機移動的模式(Random walk model),推導
    出移動的機率分佈,進而再評估出路徑生命週期的期望值。要注意的是,本
    篇並非提出一個新的繞徑協定,我們的目標是提出一個比較可信、較符合實
    際狀況且誤差較小的模型來預估路徑的生命週期。


    One wireless network architecture that has received a lot of attention recently is the mobile ad
    hoc network (MANET). It is attractive because the network can be quickly deployed without the
    infrastructure of base stations. One main feature of MANET is that mobile hosts may communicate
    with each other through a sequence of wireless links (i.e., in a multi-hop manner). While many
    routing protocols have been proposed for MANET by considering criteria such as length, quality,
    bandwidth, and signal strength, the issue of route lifetime has not been addressed
    formally. This thesis presents a formal model to predict the lifetime of a routing path based on
    the random walk model. Through such investigation, we hope to provide further insight into issues
    such as route selection, route maintenance, and network scalability related to MANETs.

    1 Introduction 1 2 System Model 4 3 Route Lifetime Prediction 6 4 Numerical and Simulation Results 11 4.1 Determining the Level of Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 4.2 Verifying Numerical Results by Simulations . . . . . . . . . . . . . . . . . . . . . . . 13 4.3 Application 1: Cost-E ectiveness Routing Paths . . . . . . . . . . . . . . . . . . . . 13 4.4 Application 2: Choosing Proper Routing Paths . . . . . . . . . . . . . . . . . . . . . 17 5 Conclusions 19

    [1] S. Agarwal, A. Ahuja, J. Singh, and R. Shorey. Route-lifetime assessment based routing
    (RABR) protocol for mobile ad-hoc networks. In IEEE ICC, pages 1697–1701, 2000.
    [2] D. B. Johnson, D. Maltz, and J. Broch. DSR: The Dynamic Source Routing Protocol for
    Multihop Wireless Ad Hoc Networks (a book chapter in Ad Hoc Networking, Ed. C. E. Perkins,
    Chapter 5). Addison-Wesley, 2000.
    [3] R. Dube, C. Rais, K. Wang, and S. Tripathi. Signal stability based adaptive routing (SSA)
    for ad-hoc mobile networks. IEEE Personal Communications, pages 36–45, Feb. 1997.
    [4] Z. Haas and M. Pearlman. ZRP: A Hybrid Framework for Routing in Ad Hoc Networks (a
    book chapter in Ad Hoc Networking, Ed. C. E. Perkins, Chapter 7). Addison-Wesley, 2000.
    [5] M. Jiang, J. Li, and Y. Tay. Cluster based routing protocol (CBRP) functional specification
    (internet draft), 1998.
    [6] C. Perkins and P. Bhagwat. Highly Dynamic Destination-Sequenced Distance-Vector (DSDV)
    Routing for Mobile Computers. In ACM SIGCOMM Symposium on Communications, Architectures
    and Protocols, pages 234–244, Sep. 1994.
    [7] Elizabeth M. Royer and C.-K. Toh. A Review of Current Routing Protocols for Ad Hoc Mobile
    Wireless Networks. IEEE Personal Communications, pages 46–55, 1999.
    [8] C. K. Toh. Associativity-based routing for ad hoc mobile networks. Wireless Personal Communications
    Journal, 4(2):103–139, Mar. 1997.
    [9] K. Paul, S. Bandyopadhyay, A. Mukherjee, and D. Saha. Communication-aware mobile hosts
    in ad-hoc wireless network. In Int’l Conf. on Personal Wireless Communication, pages 83–87,
    1999.
    [10] W. Su, S.-J. Lee, and M. Gerla. Mobility prediction in wireless networks. In MILCOM,
    volume 1, pages 491–495, 2000.
    [11] S.-J. Lee, W. Su, and M. Gerla. Ad hoc wireless multicast with mobility prediction. In Int’l
    Conf. on Computer Communication and Networks, pages 4–9, 1999.
    [12] Xu Lin and Ivan Stojmenovic. GEDIR: Loop-Free Location Based Routing in Wireless Networks.
    In Proc. IASTED Int. Conf. on Parallel and Distributed Computing and Systems, pages
    1025–1028, 1999.
    [13] M. Mauve, J. Widmer, and H. Hartenstein. A survey on position-based routing in mobile ad
    hoc networks. IEEE Network, pages 30–39, Nov/Dec 2001.
    [14] A. B. McDonald and T. F. Znati. A mobility-based framework for adaptive clustering in
    wireless ad hoc networks. IEEE J. on Selected Areas in Comm., 17(8):1466–87, Aug. 1999.
    [15] A. B. McDonald and T. F. Znati. Predicting node proximity in ad-hoc networks: A least
    overhead adaptive model for selecting stable routes. In MobiHoc, pages 29–33, 2000.
    [16] I. F. Akyildiz and J. Ho. Dynamic mobile user location update for wireless PCS networks.
    ACM Wireless Networks, 1(2):187–196, July 1995.
    [17] I. F. Akyildiz, J. Ho, and Y.-B. Lin. Movement-based location update and selective paging for
    PCS networks . IEEE/ACM Transactions on Networking, 4(4):629–638, Augest 1996.
    [18] J. Ho and I. F. Akyildiz. Mobile user location update and paging under delay constraints.
    ACM Wireless Networks, 1(4):413–426, Dec. 1995.
    [19] Yu-Chee Tseng and Wei-Neng Hung. An improved cell type classification for random walk
    modeling in cellular networks. IEEE Communications Letters, 5(8):337–339, Aug. 2001.

    QR CODE
    :::