| 研究生: |
呂玲瑄 Ling-Xuan Lu |
|---|---|
| 論文名稱: |
吡啶硫醇分子及其衍生物在金(111)上的吸附及其對銅沉積的影響 |
| 指導教授: | 姚學麟 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 電化學 、硫醇分子 、電鍍銅 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
關於有機硫醇分子在自組裝分子膜(Self-assembled monolayer)領域的研究備受關注,近年來更是專注於雜環硫醇分子的應用,而其作為電鍍銅時的有機添加劑也同樣備受重視。吡啶(Pyridine)官能基的有機硫化物被廣泛研究,目前研究表明吡啶硫醇分子可應用於促進細胞色素C的電子轉移、沉澱廢水中的重金屬、溶解金屬金以及抑制銅溶解,然而它們在界面電化學的吸附狀態及型式尚未被充分探討。本研究第一部分透過循環伏安法(CV)以及掃描式穿隧電子顯微鏡(STM),探討了2-巰基吡啶2-MPY (2-Mercaptopyridine)、2-巰基吡啶-3-羧酸2-MPYA (2-Mercaptopyridine-3-carboxylic acid)分子在金(111)電極上的吸附行為,並將結果與MMI (2-Mercapto-1-methylimidazole)、4-MPY (4-Mercaptopyridine)做比較,接著透過改變電位控制、pH值、陰離子、製備溶液的影響觀察分子在金(111)表面上的變化。結果闡明2-MPY/H2O、2-MPY/EtOH分子在pH1 硫酸、pH3 硫酸鉀、0.1 M 過氯酸中在正電位0.3 V至0.9 V之間皆可觀察到穩定的分子結構,證明結構具有相當好的穩定度,並不會受到溶劑的影響。透過高解析的STM影像圖分析2-MPY/H2O、2-MPY/EtOH、MPYA分子吸附方式。觀察到分子吸附期間並未觀察到典型硫醇分子所形成的S-Au-S結構,以及其所造成的缺陷,分子皆以S、N直接吸附於金 (111)表面上,而這樣的結果與本研究所選用的分子結構和金表面形成的鍵結有關。MPYA分子在pH1 硫酸中在正電位0.3 V至0.9 V之間皆可觀察到穩定的分子結構,證明結構亦具有相當好的穩定度。透過高解析的STM影像圖分析2-MPY/H2O、MPYA分子吸附方式一致,分子皆以S、N直接吸附於金 (111)表面上,但其中MPYA具有羧酸基(COOH),其形成的氫鍵會使結構更穩定。本研究的第二部分則揭示了2-MPY、2-MPYA分子作為電鍍銅的添加劑的效果。兩結構差異在於是否具有羧酸基(COOH),實驗證實2-MPY有顯著的抑制效果,而2-MPYA則有良好的加速效果(加速約3-4倍)。結果證實,本實驗對於2-MPY、2-MPYA的研究,有助於了解吡啶硫醇分子自組裝過程中的吸附機制,並在電鍍銅上有不錯的貢獻,希望未來可以有更多的應用。
Research on organic thiol molecules in the field of self-assembled monolayers (SAMs) has attracted significant attention, particularly the recent focus on heterocyclic thiol derivatives. These compounds have also garnered interest as organic additives in copper electroplating processes. Pyridine-functionalized organosulfur compounds have been extensively studied, and current findings indicate that pyridine-thiol molecules can promote electron transfer in cytochrome C, precipitate heavy metals from wastewater, dissolve gold, and inhibit copper dissolution. However, their adsorption states and configurations at electrochemical interfaces remain insufficiently understood.In the first part of this study, the adsorption behavior of 2-mercaptopyridine (2-MPY) and 2-mercaptopyridine-3-carboxylic acid (2-MPYA) on Au(111) electrodes was investigated using cyclic voltammetry (CV) and scanning tunneling microscopy (STM). Their behavior was compared to that of 2-mercapto-1-methylimidazole (MMI) and 4-mercaptopyridine (4-MPY). The effects of applied potential, pH, anions, and solvent environment on molecular arrangement were also examined.The results revealed that 2-MPY in both water and ethanol forms stable monolayers in pH 1 H₂SO₄, pH 3 K₂SO₄, and 0.1 M HClO₄ across a potential range of +0.3 V to +0.9 V, demonstrating excellent stability regardless of solvent. High-resolution STM images showed no typical S–Au–S thiolate structures or associated defects; instead, the molecules were found to adsorb directly via S and N atoms on the Au(111) surface—an outcome attributed to the specific molecular structures and binding modes involved.Similarly, MPYA formed stable structures in pH 1 H₂SO₄ within the same potential range, also confirmed through STM imaging to adsorb via S and N atoms. The presence of a carboxylic acid group (-COOH) in MPYA likely contributes to additional hydrogen bonding, further stabilizing the SAM structure.The second part of this study evaluated the performance of 2-MPY and 2-MPYA as additives in copper electroplating. The key structural difference lies in the presence of the –COOH group. Experimental data revealed that 2-MPY exhibited a strong suppressing effect, whereas 2-MPYA significantly accelerated the plating process by approximately 3–4 times.In conclusion, this study provides insights into the adsorption mechanisms of pyridine-thiol SAMs on gold surfaces and demonstrates their potential application as functional additives in copper electroplating, offering promising directions for future development.
1. Bigelow, W. C. ; Pickett, D. L. ; Zisman, W. A., J. Colloid Interface Sci. 1946, 1, 513
2. Ulman, A. Formation and structure of self-assembled monolayers. Chem. Rev. 1996, 96 (4), 1533-1554..
3. Nuzzo, R. G. ; Allara, D. L. J. Am. Chem. Soc. 1983, 105, 4481.
4. Ulman, A. Chem. Rev. 1996, 96, 1533.
5. Sellers, H. ; Ulman, A. ; Shnidman Y. ; Eilers, J. E. J. Am. Chem. Soc. 1993, 115, 9389.
6. Moffat, T. P.; Bonevich, J.; Huber, W.; Stanishevsky, A.; Kelly, D.; Stafford, G.; Josell, D., Superconformal electrodeposition of copper in 500–90 nm features. Journal of The Electrochemical Society 2000, 147 (12), 4524-4535.
7. Yoshimoto, S.; Ono, Y.; Kuwahara, Y.; Nishiyama, K.; Taniguchi, I. Structural Changes of 4,4′-(Dithiodibutylene)Dipyridine Sam on a Au(111) Electrode with Applied Potential and Solution Ph and Influence of Alkyl Chain Length of Pyridine-Terminated Thiolate Sams on Cytochrome C Electrochemistry. J. Phys. Chem. C 2016, 120 (29), 15803-15813.
8. Matlock, M. M.; Howerton, B. S.; Henke, K. R.; Atwood, D. A. A Pyridine-Thiol Ligand with Multiple Bonding Sites for Heavy Metal Precipitation. J. Hazard. Mater. 2001, 82 (1), 55-63.
9. Räisänen, M.; Heliövaara, E.; Al-Qaisi, F. a.; Muuronen, M.; Eronen, A.; Liljeqvist, H.; Nieger, M.; Kemell, M.; Moslova, K.; Hämäläinen, J.; Lagerblom, K.; Repo, T. Pyridinethiol-Assisted Dissolution of Elemental Gold in Organic Solutions. Angew. Chem. Int. Ed. 2018, 57 (52), 17104-17109.
10. Minamiki, T.; Ichikawa, Y.; Kurita, R. Systematic Investigation of Molecular Recognition Ability in Fet-Based Chemical Sensors Functionalized with a Mixed Self-Assembled Monolayer System. ACS Appl. Mater. Interfaces 2020, 12 (13), 15903-15910.
11. Fu, A.; Li, H.; Du, D. Thiol-Thione Tautomerism in 2-Pyridinethione: Effect of Hydration. J. Mol. Struct. THEOCHEM 2006, 767 (1), 51-60.
12. Kennedy, B. P.; Lever, A. B. P. Studies of the Metalsulfur Bond. Complexes of the Pyridine Thiols. Canadian Journal of Chemistry 1972, 50 (21), 3488-3507.
13. Maksymovych, P.; Yates, J. T., Jr. Au Adatoms in Self-Assembly of Benzenethiol on the Au(111) Surface. J. Am. Chem. Soc. 2008, 130 (24), 7518– 7519.
14. Seo, K.; Borguet, E. Potential-Induced Structural Change in a Self-Assembled Monolayer of 4-Methylbenzenethiol on Au(111). J. Phys. Chem. C 2007, 111 (17), 6335– 6342.
15. Liao, C.-C.; Yau, S. Adsorption of 2-Mercapto-1-methylimidazole on the (√3 × 22) Reconstructed and (1 × 1) Phases of an Ordered Au(111) Electrode under Potential Control. J. Phys. Chem. C 2023, 127 (19), 9030– 9038.
16. Maksymovych, P.; Yates, J. T., Jr., Au Adatoms in Self-Assembly of Benzenethiol on the Au(111) Surface. J. Am. Chem. Soc. 2008, 130, 7518-7519.
17. Seo, K.; Borguet, E., Potential-Induced Structural Change in a Self-Assembled Monolayer of 4-Methylbenzenethiol on Au(111). J. Phys. Chem. C 2007, 111, 6335-6342.
18. Liao, C.-C.; Yau, S., Adsorption of 2-Mercapto-1-Methylimidazole on the (√3 × 22) Reconstructed and (1 × 1) Phases of an Ordered Au(111) Electrode under Potential Control. J. Phys. Chem. C 2023, 127, 9030-9038.
19. Voznyy, O.; Dubowski, J. J.; Yates, J. T., Jr.; Maksymovych, P. The Role of Gold Adatoms and Stereochemistry in Self-Assembly of Methylthiolate on Au(111). J. Am. Chem. Soc. 2009, 131 (36), 12989– 12993.
20. Wang, Y.; Chi, Q.; Hush, N. S.; Reimers, J. R.; Zhang, J.; Ulstrup, J., Gold Mining by Alkanethiol Radicals: Vacancies and Pits in the Self-Assembled Monolayers of 1-Propanethiol and 1-Butanethiol on Au(111). J. Phys. Chem. C 2011, 115, 10630-10639.
21. Yang, G.; Liu, G.-y., New Insights for Self-Assembled Monolayers of Organothiols on Au(111) Revealed by Scanning Tunneling Microscopy. J. Phys. Chem. B 2003, 107, 8746-8759.
22. Kim, Y. T.; McCarley, R. L.; Bard, A. J., Takahiro Sawaguchi,² Fumio Mizutani,*,² and Isao Taniguchi. Langmuir 1993, 9, 1941-1944.
23. Lai, C.-S.; Chen, Y.-Y.; Yau, S.; Dow, W.-P.; Lee, Y.-L., In Situ Scanning Tunneling Microscopy Imaging Self-Assembled Monolayers of Mercaptoacetic Acid and Cupric Ion on Au(111) Electrode. Journal of The Electrochemical Society 2014, 161, D742.
24. Liu, Y.-F.; Lee, Y.-L., Adsorption Characteristics of Oh-Terminated Alkanethiol and Arenethiol on Au(111) Surfaces. Nanoscale 2012, 4, 2093-2100.
25. Sawaguchi T, Mizutani F, Taniguchi I, Direct Observation of 4-Mercaptopyridine and Bis(4-pyridyl) Disulfide Monolayers on Au(111) in Perchloric Acid Solution Using In Situ Scanning Tunneling Microscopy. Langmuir 1998, 14, 3565-3569.
26. Herrera S, Tasca F,. Williams. F.J, and Calvo.E.J., Surface Structure of 4 Mercaptopyridine on Au(111): A New Dense Phase. Langmuir 2017, 33, 9565−9572.
27. Baunach T, Ivanova V, Scherson D.A., Kolb D.M., Self-Assembled Monolayers of 4-Mercaptopyridine on Au(111): A Potential-Induced Phase Transition in Sulfuric Acid Solutions. Langmuir 2004, 20, 2797-2802.
28. Cui, B.; Chen, T.; Wang, D.; Wan, L.-J., In Situ Stm Evidence for the Adsorption Geometry of Three N-Heteroaromatic Thiols on Au(111). Langmuir 2011, 27, 7614-7619.
29. Andricacos, P. C.; Uzoh, C.; Dukovic, J. O.; Horkans, J.; Deligianni, H., Damascene copper electroplating for chip interconnections. IBM Journal of Research and Development 1 , 42 (5), 567-574.
30. Taniguchi, I.; Yoshimoto, S.; Sunatsuki, Y.; Nishiyama, K. Potential and pH Dependencies of Adsorbed Species of 2-, 4-Pyridinethiol and 2-Pyrimidinethiol on Au(111) Electrode. Electrochemistry 1999, 67 (12), 1197– 1199.
31. Sawaguchi, T.; Mizutani, F.; Yoshimoto, S.; Taniguchi, I. Voltammetric and in situ STM studies on self-assembled monolayers of 4-mercaptopyridine, 2-mercaptopyridine and thiophenol on Au(111) electrodes. Electrochim. Acta 2000, 45 (18), 2861– 2867.
32. Ataka, K.-i.; Yotsuyanagi, T.; Osawa, M. Potential-Dependent Reorientation of Water Molecules at an Electrode/Electrolyte Interface Studied by Surface-Enhanced Infrared Absorption Spectroscopy. J. Phys. Chem. 1996, 100 (25), 10664– 10672.
33. Magnussen, O. M.; Hageböck, J.; Hotlos, J.; Behm, R. J. In situ scanning tunnelling microscopy observations of a disorder–order phase transition in hydrogensulfate adlayers on Au(111). Faraday Discuss. 1992, 94 (0), 329– 338.
34. Sawsan M. S. Haggag. Surface Layer-by-Layer Chemical Deposition Reaction for Nanosized Thin-Film Formation of Metal Complexes of 2-Mercaptonicotinic Acid. Eur. J. Inorg. Chem. 2010, 1572–1580