跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇樓來
Lau-Loi So
論文名稱: 準區域的膺張量和陳聶式子
Quasi-local energy-momentum and pseudotensors for GR in small regions
指導教授: 聶斯特
James M. Nester
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 物理學系
Department of Physics
畢業學年度: 94
語文別: 英文
論文頁數: 90
外文關鍵詞: gravitation, pseodotensor
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 始於愛氏,能動量區域化是引力論重要課題。基於對等原理,引力能動量密度不存在。傳統解決方法是用不同標架膺張量,近代方法是膺區域能動量。陳江梅透過哈密頓方法,提出四組準局域能動量方程式。大部份古典膺張量方程式有相同宏觀能動量值,卻不同於小區域;在眾多表達式中,尋找適切描述引力能動量。我們研究古典膺張量(例如愛氏、柏氏或布氏、1958和1961年版本的毛氏與溫氏)和協變哈密頓準局域邊界方程式,物理條件在物質和真空。於小區域尺度,其計算結果可以篩選那種表達式能夠滿足正能量要求,沒有一個古典膺張量表達式滿足正能量特性。但有1個常數綫性組合能夠給出彪張量,即小區域正能量;還有3個常數綫性組合的柯座標架膺張量亦能給出彪張量。再者,應用正座標架,1961年的毛氏式子和陳江梅的其一表達式,與及在柯座標架修正版的陳聶表達式,這三個式子均在自然邊界條件下給出彪張量。


    The localization of energy-momentum for gravitating systems has remained an
    important problem since the time of Einstein. Due to the equivalence principle
    there is no proper energy-momentum density. Traditional approaches led to a va-
    riety of reference frame dependent expressions, referred to as pseudotensors. A
    more modern idea is quasilocal energy-momentum. C.M. Chen, using a covariant
    Hamiltonian formalism, gave four preferred Hamiltonian boundary term quasilocal
    energy-momentum expressions. The classical pseudotenor expressions, as well as the
    quasilocal expressions generally agree for the total (i.e. global) values but give quite
    di®erent values locally. It is desirable to ¯nd some way to choose which expression
    gives a better description of the energy-momentum for a gravitating system. Here
    we shall test both the well-known classical pseudotensors (in particular, Einstein,
    Papapetrou, Landau-Lifshits '' Bergmann-Thomson, M¿ller (1958), M¿ller (1961),
    Weinberg) and the covariant Hamiltonian quasilocal boundary expressions in a dif-
    ferent regime, namely the small region limit|both inside matter and in vacuum.
    All of the expressions|except for M¿ller''s 1958 expression|give the correct mate-
    rial limit. In small vacuum regions we found some interesting results which allows
    us to choose which expressions satisfy an important physical property: positive en-
    ergy. None of the classical pseudotensors satis¯es this positivity property, however
    there is a one-parameter set of linear combinations which, to lowest non-vanishing
    order is proportional to the Bel-Robinson tensor and hence is positive for small
    regions. Moreover, we have constructed an in¯nite set (with 10 constant parame-
    ters) of additional new holonomic pseudotensors which, although rather contrived,
    satisfy this important positive energy requirement. On the other hand we found
    that M¿ller''s 1961 teleparallel-tetrad energy-momentum expression naturally has
    this Bel-Robinson property. For C.M. Chen''s covariant-symplectic quasilocal ex-
    pressions we found that one, corresponding to the natural boundary choices, gives
    this desired Bel-Robinson positivity result in orthonormal frames. Moreover within
    a two parameters modi¯cation of the Chen-Nester four expressions, one gives an
    extra nice result in holonomic frames.

    1 Introduction 1 2 Gravitational energy-momentum and its localization 7 2.1 The classical pseudotensors . . . . . . . . . . . . . . . . . . . . . . . 9 2.2 Hamiltonian boundary and quasi-local expressions . . . . . . . . . . . 11 2.3 Criteria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 2.4 Riemann Normal Coordinates . . . . . . . . . . . . . . . . . . . . . . 15 3 Some properties of the Bel-Robinson and Weyl tensors 17 3.1 Some properties of the Bel-Robinson tensor . . . . . . . . . . . . . . 17 3.2 Some properties of the Weyl tensor . . . . . . . . . . . . . . . . . . . 20 4 The classical holonomic pseudotensors 24 4.1 Einstein pseudotensor . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 4.2 Bergmann-Thomson pseudotensor . . . . . . . . . . . . . . . . . . . . 28 4.3 Papapetrou pseudotensor . . . . . . . . . . . . . . . . . . . . . . . . . 29 4.4 Weinberg pseudotensor . . . . . . . . . . . . . . . . . . . . . . . . . . 31 4.5 M¿ller 58 pseudotensor . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.6 The modi¯cation of the M¿ller 58 pseudotensor . . . . . . . . . . . . 34 4.7 The combination of the classical holonomic pseudotensors . . . . . . . 35 4.8 A large class of new pseudotensors which satisfy the positive require- ment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5 The tetrad/teleparallel theory 43 5.1 The Tetrad theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.2 Teleparallel theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.3 Orthonormal frames . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 5.4 The M¿ller 1961 classical energy-momentum density in tetrad-teleparallel expression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 6 Covariant Hamiltonian formalism & quasilocal boundary terms for metric-compatible gravity 49 6.1 Covariant Hamiltonian formalism . . . . . . . . . . . . . . . . . . . . 49 6.2 Metric-compatible gravity . . . . . . . . . . . . . . . . . . . . . . . . 52 7 Einstein and Einstein-Cartan theory 54 7.1 Einstein GR theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.2 Einstein-Cartan theory . . . . . . . . . . . . . . . . . . . . . . . . . . 57 8 The four orthonormal frame expressions: small region limit 60 8.1 Einstein''s gravity theory . . . . . . . . . . . . . . . . . . . . . . . . . 60 8.2 Expression for quasilocal quantities . . . . . . . . . . . . . . . . . . . 61 8.3 Application of the four expressions in small region limit . . . . . . . . 64 8.4 Comparison of our results with others . . . . . . . . . . . . . . . . . . 67 9 The modi¯cation of Chen-Nester''s four quasilocal expressions 69 9.1 Chen-Nester''s 4 boundary expressions . . . . . . . . . . . . . . . . . . 69 9.2 The modi¯cation of Chen-Nester''s 4 boundary expressions . . . . . . 73 9.3 On the physical interpretation of the modi¯ed Chen-Nester''s 4 bound- ary expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 9.4 Gravitation application of the new quasilocal expressions . . . . . . . 76 10 Conclusion 82 Bibliography 86

    [1] L.B. Szabados, Living Rev. Relativity, 7 (2004) 4
    http://www.livingreviews.org/lrr-2004-4
    [2] G. Berqvist, Class. Quantum Grav. 9 (1992) 1753{68, 1917{22
    [3] L.B. Szabados, Class. Quantum Grav. 16 (1999) 2889{2904; gr-qc/99101068
    [4] C.M. Chen and J.M. Nester, Class. Quantum Grav. 16 (1999) 1279{1304; gr-
    qc/9809020.
    [5] G.T. Horowitz, in Asymptotic Behaviour of Mass and Spacetime Geometry"
    Lecture Nites in Physics 202. Springer Verlag, ed F.J. Flaherty, page 1.
    [6] C.M. Chen, J.M. Nester and R.S. Tung, Physical Review D 72 104020 (2005).
    [7] J.M. Nester, Class. Quantum Grav. 21 S261 (2004).
    [8] C.C. Chang, J.M. Nester C.M. Chen, Phys. Rev. Lett. 83 (1999) 1897{901; gr-
    qc/9809040
    [9] C.M. Chen and J.M. Nester, Gravitation & Cosmology 6 (2000) 257{70; gr-
    qc/0001088
    [10] F. Gronwald and F. W. Hehl, On the gauge aspects of gravity," [arXiv:gr-
    qc/9602013].
    [11] J. Katz, J. Bi·c¶ak and D. Lynden-Bell, Phys. Rev. D55, 5957 (1997).
    [12] A. Arnowitt, S. Deser and C. W. Misner, The dynamics of general relativity, in
    Gravitation: An Introduction to Current Research, ed. L. Witten (Wiley, New
    York, 1962) pp 227-65.
    [13] T. Regge and C. Teitelboim, Ann. phys. 88, 286 (1974).
    [14] R. Beig and N. ¶O Murchadha, Ann. Phys. 174, 463 (1987).
    [15] L. Szabados, Class. Quantum Grav. 20, 2627 (2003) [arXiv:gr-qc/0302033].
    [16] S. Deser, J.S. Franklin and D. Seminaea (1999). Class. Quantum Grav. 16,
    2815.
    [17] J.M.M. Senovilla, Super-energy tensors, gr-qc/9906087.
    [18] L. Bel, C. R. Acad. Sci. (Paris) 247 (1958) 1094.
    [19] L. Bel, PhD Thesis (C.D.U. et S.E.D.E.S. paris 5e) (1960).
    [20] L. Bel, Cahiers de Physique 138 (1962) 59.
    [21] M.D. Roberts, General Rel. Grav. 20 (1988) 775-792.
    [22] G.T. Horowitz and B.G. Schmidt (1982). Proc. Roy. Soc. A, 381, 215.
    [23] J.M.M. Senovilla, (Super)n-energy for arbitrary ¯elds and its interchange: con-
    served quantities. gr-qc/9905057.
    [24] M.A.G. Bonilla and J.M.M. Senovilla, Gen. Rel. Grav. 29, 91 (1997).
    [25] I. Krishnasamy, Gen. Rel. Grav. 17, 621 (1985); G. Bergqvist, Class. Quantum
    Grav. 11, 3031 (1994); L.B. Szabados, gr-qc/9901068.
    [26] A. Komar, Phys. Rev. 164, 1595 (1967).
    [27] J. Garecki, Acta Phys. Pol. B8 159 (1977).
    [28] S. Deser, in Gravitation and Geometry, eds. W. Rindler and A. Trautman
    (Naples, Bibliopolis, (1987).
    [29] S. Deser and Z. Yang, Class. Quantum Grav. 7, 1491 (1990).
    [30] B. Mashhoon, J.C. Clune and H. Quevedo Class. Quantum Garv. 16, 1137
    (1999).
    [31] C.W. Misner, K.S. Thorne and J.A. Wheeler 1973 Gravitation (San Francisco,
    CA: Freeman).
    [32] J.M.M. Senovilla, Remarks on superenergy tensors, gr-qc/9901019.
    [33] J. Garecki, Class. Quantum Grav., 2 (1985) 403-408.
    [34] C.C. Chang, The localization of gravitational energy: pseudotensors and qu-
    sailocal expressions." (M.Sc. thesis NCU, 1998).
    [35] L.D. Landau and E.M. Lifshitz, The classical theory of ¯elds, 2nd edition (Read-
    ing, Mass.: Addison-Wesley, 1962)
    [36] Freud, Ph., ÄUber die AusdrÄucke der Gesamtenergie und des Gesamtimpulses
    eines Materiellen Systems in der allgemeninen RelativitÄatstheorie, Ann. Math,
    40, 417 (1939).
    [37] R.C. Tolman, Relativity, Theomodynamics and Cosmology (Lodon: Oxford
    University Press, 1934).
    [38] P.G. Bergmann and R. Thomson, Spin and angular momentum in general re-
    altivity, Phys. Rev. 89, 400 (1953).
    [39] A. Papapetrou, Einstein''s theory of gravitation and °at space, Proc. Roy. Irish.
    Acad. A52, 11 (1948).
    [40] S. Weinberg, Gravitation and Cosmology (Weley, New York, 1972).
    [41] C. M¿ller, On the localization of the energy of a physical system in the general
    relativity, Ann. Phys. 4, 347 (1958).
    [42] J.W. Maluf, J.F.da Rocha-Neto, T.M.L.Toribio and K.H.Castello-Branco
    (2002) Phys. Rev. D 65 124001
    [43] W.Q. Li and W.T. Ni (1979). J. Math. Phys. 20(9), 1925.
    [44] M. Carmeli 1982 Classical Fields General Relativity and Gauge Theory (World
    Scienti¯c) p488.
    [45] C. M¿ller, Mat. Fys. Dan. Vid. Selsk. 1, No.10, 1 (1961); Ann. Phys. 12, 118
    (1961).
    [46] J. Kijowski and W.M. Tulczyiew (1979) A symplectic Framework for Field
    Theories (Lecture Notes in Physics Vol.107) (Berlin: Springer)
    [47] K. Hayashi and T. Shirafuji, Phys. Rev. D19, 3524 (1979).
    [48] G. Bergqvist, Energy of small surfaces", Class. Quantum Grav., 11 (1994)
    3013-3023.
    [49] G. Bergqvist and M. Ludvigsen, Qusai-local mass near a point", Class. Quan-
    tum Grav., 4 (1987) L29-L32.

    QR CODE
    :::