| 研究生: |
花銘遠 Ming-Yuan Hua |
|---|---|
| 論文名稱: |
串接耦合量子點之熱電特性 Thermoelectric Properties of Double Quantum Dots Embedded in a Nanowire |
| 指導教授: |
郭明庭
Ming-Ting Kuo |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 41 |
| 中文關鍵詞: | 串接耦合量子點之熱電特性 |
| 外文關鍵詞: | Thermoelectric Properties of Double Quantum Dots |
| 相關次數: | 點閱:5 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了瞭解量子點間電子躍遷強度、量子點間庫倫交互作用以及量子點大小變動對熱電特性的影響。我們利用雙能階安德森模型(Two Level Anderson Model)模擬雙量子點崁入奈米線的系統,並討論其熱電特性。其中雙能階安德森模型中包含量子點間電子躍遷、量子點內庫倫交互作用以及量子點間庫倫交互作用。庫倫阻斷情況下的熱流與電流可以利用凱帝旭格林函數的方法(Keldysh-Green’s function technique)計算得知。接著探討此系統在線性響應區間的電導、Seebeck coefficient、熱導以及ZT值。我們發現庫倫交互作用和量子點大小不一致都會抑制ZT值,但量子點間庫倫交互作用強度在大於某個程度後此效應卻幾乎不影響ZT值。
In order to investigate the influence of electron hopping, interdot Coulomb interaction, and size fluctuation on thermoelectric properties. We simulate thermoelectric properties of double Quantum Dots embedded in a nanowire by a two-level Anderson model which including electron hopping, intradot Coulomb interactions and interdot Coulomb interactions. The charge and heat currents in the Coulomb blockage regime are calculated by Keldysh Green''s function technique. The electrical conductance, Seebeck coefficient, electronic thermal conductance, and figure of merit (ZT) of the system are calculated in the linear response regime. We find that the figure of merit ZT is markedly reduced by the size fluctuation and Coulomb interactions.
[1.1] T. J. Seebeck. “Ma Magnetische polarization der metalle und erzedurch temperature–differenze. Abhand deut. ” Akad. Wiss. Berlin, pp. 265-373, (1821)
[1.2] J. C., Peltier., “Nouvelles experiences sur la caloriecete des courans electriques.” Ann. Chem., LVI, pp. 371-387, (1834)
[1.3] D.M. Rowe, Ph.D., D.Sc. “Thermoelectrics Handbook (Macro To Nano)”, CRC, New York (2006).
[1.4] G. Mahan, B. Sales, and J. Sharp., “Thermoelectric Materials:New Approaches To An Old Problem” Phys. Today., 50(3), 42 (1997)
[1.5] A. F. Ioffe, “Semiconductor Thermoelements and Thermoelectric Cooling”, Infosearch, London, (1957)
[1.6] H. J. Goldsmd,. B. Sc., and R. W. Dougl, “The use of semiconductors in thermoelectric refrigeration”, Br. J. Appl. Phys. 5, 386 (1954).
[1.7] M. S. Dresselhaus, G. Chen, M. Y. Tang., R. Yang., H Lee., D. Wang., Z. Ren., J. –P. Fleurial, and P. Gogna., “New Directions for Low-Dimensional Thermoelectric Materials” , Advanced Materials. 19, p1043-1053 (2007).
[1.8] D. T. Morelli, T. Caillat, J.-P. Fleurial, A. Borshchevsky, and J. Vandersande, B. Chen and C. Uher, “Low-temperature transport properties of p-type CoSb3” , Phys. Rev. B, 51, 9622
[1.9] G. S. Nolas., D. T. Morelli., T. M. Tritt, “SKUTTERUDITES:A Phonon-Glass-Electron Crystal Approach to Advanced Thermoelectric Energy Conversion Applications” ,Annu. Rev. Mater, 29, 89 (1999).
[1.10] T. Caillat, A. Borshchevsky., J.-P. Fleurial., “Properties of single crystalline semiconducting CoSb3” , J. Appl. Phys, 80, 4442 (1996).
[1.11] L. D. Hicks., and M. S. Dresselhaus., “Thermoelectric figure of merit of a one-dimensional conductor”, Phys. Rev. B, 47, 16631 (1993)
[1.12] L. D. Hicks., T. C. Harman., X. Sun. and M. S. Dresselhaus.,“Experimental study of the effect of quantum-well structures on the thermoelectric figure of merit”,Phys. Rev. B, 53, R10493 (1996)
[1.13] G. Slack, in CRC Hadbook of Thermoelectric[1.1]
[1.14] L. D. Hicks. and M. S. Dresselhaus.,“Effect of quantum-well structures on the thermoelectric figure of merit”,Phys. Rev. B, 47, 12727 (1993)
[1.15] T. Koga, S. B. Cronin, M. S. Dresselhaus, J. L. Liu, and K. L. Wang.,“Experimental proof-of-principle investigation of enhanced Z3DT in (001) oriented Si/Ge superlattices ”, Appl. Phys. Lett. 76, 3944 (2000)
[1.16] G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices” ,Phys. Rev. B, 57, 14958(1998).
[1.17] G. Springholz., V. Holy, M. Pinczolits and G. Bauer.,“Self-Organized Growth of Three-Dimensional Quantum-Dot Crystals with fcc-Like Stacking and a Tunable Lattice Constant” Science, 282, 734 (1998)
[1.18] G. Springholz., M. Pinczolits, P. Mayer. V. Holy, G. Bauer, H. H. Kang, and L. Salamanca-Riba,“Tuning of Vertical and Lateral Correlations in Self-Organized PbSe/Pb1-xEuxTe Quantum Dot Superlattices”Phys. Rev. Lett., 84, 4669 (2000)
[1.19] T. C. Harman., P. J. Taylor., M. P. Walsh, and B. E. LaForge.“Quantum Dot Superlattice Thermoelectric Materials and Devices”Science, 297, 2229 (2002)
[1.20] Y. –M. Lin., and M. S. Dresselhaus.,“Thermoelectric properties of superlattice nanowires” Phys. Rev. B, 68, 075304 (2003)
[1.21] C. Dames. and G. Chen., “Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires” J. Appl. Phys., 95, 682 (2004)
[1.22] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheil, J. K. Yu, W. A. Goddard III, J. R. Heath, “Silicon nanowires as efficient thermoelectric materials” Nature, 451, 168(2008).
[1.23] Y. Lan, A. J. Minnich, G. Chen, Z. Ren, “Enhancement of Thermoelectric Figure-of-Merit by a Bulk Nanostructuring Approach” Adv. Funct. Mater, 20, 357(2010).
[1.24] R. Yang, G. Chen, “Thermal conductivity modeling of periodic two-dimensional nanocomposites” Phys. Rev. B, 69,195316(2004).
[1.25] T. Markussen, A. P. Jauho, M. Brandyge, “Surface-Decorated Silicon Nanowires: A Route to High-ZT Thermoelectrics” Phys. Rev. Lett,, 103, 055502(2009).
[1.26] D. H. Santamore, M. C. Cross, “Effect of Phonon Scattering by Surface Roughness on the Universal Thermal Conductance” Phys. Rev. Lett., 87, 115502(2001).
[1.27] L. G. C. Rego, G. Kirczennow, “Quantized Thermal Conductance of Dielectric Quantum Wires” Phys. Rev. Lett., 81, 232(1998).
[2.1] H. Haug and A. P. Jauho: Quantum Kinetics in Transport and Optics of Semiconductions (Springer, Heidelberg, 1996)
[2.2] David M. T. Kuo and Y. C. Chang, “Electron tunneling rate in quantum dots under a uniform electric field”, Phys. Rev. B, 61, 11051 (2000)
[2.3] B. R. Bulka and T. Kostyrko, “Electronic correlations in coherent transport through a two quantum dot system”, Phys. Rev. B, 70, 205333 (2004)
[2.4] David. M. T. Kuo and Y. C. Chang, “Tunneling Current Spectroscopy of a Nanostructure Junction Involving Multiple Energy Levels”, Phys. Rev. Lett, 99, 086803 (2007)
[2.5] Y. C. Chang and David. M. T. Kuo, “Theory of charge transport in a quantum dot tunnel junction with multiple energy levels”, Phys. Rev. B, 77, 245412 (2008)
[2.6] P. Pals and A. MacKinnon, “Coherent tunnelling through two quantum dots with Coulomb interaction ”, Condens. Matter, 8, 5401 (1996)
[3.1] C. Dames. and G. Chen.,“Theoretical phonon thermal conductivity of Si/Ge superlattice nanowires” J. Appl. Phys., 95, 682 (2004)
[3.2] D. M. T. Kuo. and Y. C. Chang., “Thermoelectric and thermal rectification properties of quantum dot junctions” Phys. Rev. B, 81, 205321 (2010)
[3.3] P. Murphy., S. Mukerjee, and J. Moore, “Optimal thermoelectric figure of merit of molecular junction”, Phys. Rev. B 78, 161406 (2008).
[3.4] T. Markussen., A. P. Jauho., and M. Brandyge, “Surface-decorated silicon nanowires: a route to high-ZT thermoelectrics” , Phys. Rev. Lett. 103, 055502 (2009).
[3.5] K. Schwab., E. A. Henriksen. J. M. Worlock., and M. L. Roukes. “Measurement of the quantum of thermal conductance” ,Nature 404, 974 (2004)
[3.6] A. I. Boukai, Y. Bunimovich, J. Tahir-Kheli, J. K. Yu, W. A. Goddard III, and J. R. Heath. “Silicon nanowires as efficient thermoelectricmaterials” ,Nature 451, 168 (2004)