| 研究生: |
蔣以約 Yi-Yue Chiang |
|---|---|
| 論文名稱: |
以(100)矽基板上的氮化硼研製P型異質場效電晶體 Fabrication of P-Channel Heterostructure Field Effect Transistors with the Boron Nitride Grown on Si(100) Substrates |
| 指導教授: |
賴昆佑
Kun-Yu Lai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 高電子遷移率電晶體 、遷移率 、電晶體 、二維電洞氣 、霍爾量測 |
| 外文關鍵詞: | HFET, HEMT, p-channel, 2DHG, hall measurement |
| 相關次數: | 點閱:76 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討氮化硼(boron nitride, BN)成長於矽(Si)基板上的異質結構特性,並嘗試以此磊晶結構所形成的二維電洞氣(two-dimensional hole gas, 2DHG),研製P型異質場效電晶體。
在實驗部分,我們使用金屬有機化學氣相沉積法(metal-organic chemical vapor deposition, MOCVD)於 Si(100) 基板上成長 BN 薄膜,形成BN/Si 異質結構。藉由低溫霍爾量測,我們發現BN/Si介面在 13 K 至 300 K 溫度範圍內,有極高的電洞濃度,穩定維持在 1.7~2.0 × 1015 cm−2,遷移率則介於 48~54 cm2/V⋅s,不會隨著溫度改變,呈現明顯的2DHG特性,與常見的摻雜(acceptor-doped)電洞不同。
為驗證此結構於元件上的應用潛力,我們製作具閘極控制之 P-channel 高電子遷移率電晶體(Heterostructure Field Effect Transistors, HFET),並進行直流電性量測。元件展現常開(depletion-mode)特性,且具備初步的閘極調變能力,顯示出 BN on Si 結構具備場效應控制特性,有機會應用在寬能隙 CMOS 邏輯電路。
This study aims to fabricate a p-channel heterostructure field effect transistor (HFET) with the boron nitride (BN) grown on Si(100) substrates. The BN layer was deposited on a Si (100) substrate using metal-organic chemical vapor deposition (MOCVD). According to the results of low-temperature Hall measurements (13K ~ 300K), the BN/Si interface delivered a stable hole density at 1.7~2.0 × 1015 cm−2, and hole mobility at 48~54 cm2/V⋅s, showing the two-dimensional hole gas (2DHG) behavior. The result is not attainable with the holes by acceptor doping, which exhibiting strong temperature dependence.
To explore the possibility in device applications, the BN-based p-channel HFETs were fabricated and characterized by DC measurements. The device exhibited the depletion-mode characteristics and demonstrated limited gate modulation capability. The result indicates that the 2DHG at BN/Si can be controlled by gate voltage, showing a potential for wide-bandgap CMOS logic circuits.
[1] Liritzis, I.; Droseros, N. D. Light Emitting Diodes and Optically Stimulated Luminescence Dating in Archaeology: An Overview. Mediterr. Archaeol. Archaeom. 2015, 15 (2), 277–291. https://doi.org/10.5281/zenodo.18058.
[2] Mari, L. An Introduction to CMOS Technology. EE Power, July 20, 2021. https://eepower.com/technical-articles/an-introduction-to-cmos-technology/ (accessed 2025-06-23).
[3] Zhang, Y.; Zhang, Y.; Hao, Y. Recent advances of GaN-based heterostructure field-effect transistors for high-frequency applications. Chin. Phys. B 2015, 24 (6), 067301. https://doi.org/10.1088/1674-1056/24/6/067301.
[4]Sazawa, H.; Nakajima, A.; Kuboya, S.; Umezawa, H.; Kato, T.; Tanaka, Y. P-Channel HFET Utilizing 2D Hole Gas in Si-Face 3C/4H-SiC Heterostructure. IEEE Electron Device Lett. 2024, 45 (9), 1562–1565. https://doi.org/10.1109/LED.2024.3424396.
[5] Amarnath, G.; Das, B.; Karmakar, S.; Ghosh, B.; Tiwari, R.; Bhattacharya, S.; Pal, D. Two-Dimensional Electron Gas at the Interface of GaN/AlGaN Heterostructures for High Performance Devices. J. Mater. Sci.: Mater. Electron. 2015, 26, 3789–3795.
[6] Faramehr, S.; Kalna, K.; Igić, P. Modeling of 2DEG and 2DHG in i-GaN Capped AlGaN/AlN/GaN HEMTs. In Proceedings of the 29th International Conference on Microelectronics (MIEL 2014), Belgrade, Serbia, May 12–14, 2014; IEEE: Piscataway, NJ, 2014; pp 81–84.
[7] Yagi, S.; Shimizu, M.; Inada, M.; Yamamoto, Y.; Piao, G.; Okumura, H.; Yano, Y.; Akutsu, N.; Ohashi, H. High Breakdown Voltage AlGaN/GaN MIS–HEMT with SiN and TiO₂ Gate Insulator. Solid-State Electron. 2006, 50 (7–8), 1057–1061.
[8] Lingaparthi, R.; Dharmarasu, N.; Radhakrishnan, K. Origin of the Two-Dimensional Hole Gas and Criteria for Its Existence in the III-Nitride Heterostructures. Appl. Phys. Lett. 2023, 122 (17), 172103.
[9] Chowdhury, U.; Higashiwaki, M.; Altman, D. H.; Tiedemann, E. H., Jr.; Trejo, M.; Taylor, T. H.; Beam, E. A., III; Keller, S.; Mishra, U. K. AlGaN/GaN HEMT With 300-GHz f<sub>max</sub>. IEEE Electron Device Lett. 2014, 35 (8), 876–878.
[10] Russo, S.; Di Carlo, A. Influence of the Source–Gate Distance on the AlGaN/GaN HEMT Performance. IEEE Trans. Electron Devices 2007, 54 (5), 1071–1075.
[11] Kanamura, M.; Ohki, T.; Kikkawa, T.; Imanishi, K.; Imada, T.; Yamada, A.; Hara, N. Enhancement-Mode GaN MIS-HEMTs With n-GaN/i-AlN/n-GaN Triple Cap Layer and High-k Gate Dielectrics. IEEE Electron Device Lett. 2010, 31 (3), 189–191.