| 研究生: |
吳健暘 Jian-Yang Wu |
|---|---|
| 論文名稱: |
光子晶體傳導帶與介電質柱波導之研究 Study on the conduction band of photonic cryatal and dielectric rods waveguide |
| 指導教授: |
欒丕綱
Pi-Gang Luan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 61 |
| 中文關鍵詞: | 光子晶體傳導帶 、介電質柱波導 、彎曲波導 |
| 外文關鍵詞: | conduction band of photonic cryatal, dielectric rods waveguide, bent waveguide |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文以平面波展開法、長波極限法以及多重散射法來研究光子晶體之傳導帶特性,並提出一種新式的波導-介電質柱波導,它是由一列的介電質柱所構成。在適當的頻率下,光的能量會侷限在每根柱子內,很像是光在一個接著一個的共振腔中傳播。此種波導可在許多不同結構下仍然可以有很高的穿透率,並且不像光子晶體波導具有幾何結構上的限制,只能做特定角度的轉彎,任意角度的轉彎對於介電質柱波導是可達成的 。並且相對於傳統介電質波導,可大幅降低轉彎時所需的曲率半徑,相信在未來,此種形式的波導會在光電元件及積體光學中扮演重要的角色。
We propose a new type of optical waveguide that consists of several dielectric rods.
In this new type of optical waveguide, energy will localize in every rod in some frequency, as light propagating in strongly localized cavities. High transmission is observed for various waveguide structures. All angle bends in dielectric rods waveguide can be happened, but photonic crystal waveguide can’t. And it uses less radius of curvature then classical dielectric waveguide. The waveguide may have practical importance for development of optoeletronic components and circuits.
[1] J. D. Joannopoulos, R. D. Meade, J. N. Winn, Photonic Crystals—Molding the Flow of Light, Princeton University Press, 1995.
[2] E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett. 58, 2059 (1987).
[3] S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett. 58, 2486 (1987).
[4] C. Kittel, Introduction to Solid State Physics, 8th Ed., John Wiley & Sons, USA, 2005.
[5] Yoel Fink, Joshua N. Winn, Shanhui Fan, Chiping Chen, Jurgen Michel, John D. Joannopoulos, Edwin L. Thomas, “A Dielectric Omnidirectional Reflector”, Science 282, 1679(1998).
[6] Philip Russel, “photonic crystal Fibers”, Science 299,358(2003).
[7] M. Notomi, “Theory of light propagation in strongly modulated photonic crystals: Refractionlike behavior in the vicinity of the photonic band gap”, Phys. Rev. B 62, 10696 (2000).
[8] Chiyan Luo, Steven G. Johnson, and J. D. Joannopoulos, and J. B. Pendry, “All-angle negative refraction without negative effective index”, Phys. Rev. B 65, 201104 (2002); Chiyan Luo, Steven G. Johnson, and J. D. Joannopoulos, “All-angle negative refraction in a three-dimensionally periodic photonic crystal”, Appl. Phys. Lett. 81, 2352 (2002).
[9] J. B. Pendry, “Negative Refraction Makes a Perfect Lens”, Phys. Rev. Lett. 85, 3966 (2000).
[10] P. Halevi, A. A. Krokhin and J. Arriaga, “Photonic Crystal Optics and Homogenization of 2D Periodic Composites’’, Phys. Rev. Lett. 82, 719 (1999).
[11] A. A. Krokhin, P. Halevi, and J. Arriaga, “Long-wavelength limit (homogenization) for two-dimensional photonic crystals”, Phys. Rev. B. 65, 115208 (2003) .
[12] Bikash C. Gupta, Chao-Hsien Kuo, and Zhen Ye, “Propagation inhibition and localization of electromagnetic waves in two- dimensional random dielectric systems”, Phys. Rev. E 69, 066615 (2004).
[13] I. S. Gradshteyn, I. M. Ryzhik, Alan Jeffrey, Table of Integrals, Series, and Products, 5th Ed., Academic Press, 1994.
[14] J. D. Jackson, Classical electrodynamics, 3rd Ed, John Wiley &Sons, New York, 1999.
[15] M. Tokushima, H. Kosaka, A. Tomita, H. Yamada, “Lightwave propagation through a 120o sharply bent single-line-defect photonic crystal waveguide,” Appl. Phys. Lett. 76, 952 (2000).
[16] A. Talneau, L.Le Gouezigou, N. Bouadma, M. Kafesaki, C. M. Soukoulis, M. Agio, “Photonic-crystal ultrashort bends with improved transmission and low reflection at 1.55?m,” Appl. Phys. Lett. 80, 547 (2002).
[17] A. Chutinan, M. Okano, S. Noda, “Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs,” Appl. Phys. Lett. 80, 1698 (2002).
[18] Amnon Yariv, Yong Xu, Reginal K. Lee, and Axel Scherer, “Coupled-resnator optical waveguide: a proposal and analysis”, Opt. Lett. 24,711(1999)
[19] Stefano Boscolo, Michele Midrio, and Carlo G. Someda, “Coupling and decoupling of electromagnetic waves in parallel 2-d photonic crystal waveguides”, IEEE J. Quantum Electron 47, 38(2002).
[20] A. Sharkawy, S. Shi, D. W. Prather, “Electro-optical switching using coupled photonic crystal waveguides”, Opt. Express 10, 1048 (2002).
[21] Eiji Miyai, and Susumu Noda, “Structural dependence of coupling between a two-dimensional photonic crystal waveguide and a wire waveguide”, J. Opt. Soc. Am. B 67, 21(2004).
[22] K. C. Kwan, X. Zhang, Z. Q. Zhang, C. T. Chan, “Effect due to disorder on photonic crystal-based waveguides,” Appl. Phys. Lett. 82, 4414 (2003).
[23] H. Miyazaki, M. Hase, H. T. Miyazaki, Y. Kurokawa, N. Shinya, “Photonic material for designing arbitrarily shaped waveguides in two dimensions,” Phys. Rev. B 67, 235109 (2003).