跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王承賢
Cheng-Xian Wang
論文名稱: WVR、GPS及氣球探空觀測可降水量之比較
指導教授: 劉說安
Yuei-an Liou
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
畢業學年度: 88
語文別: 中文
論文頁數: 71
中文關鍵詞: 可降水量
外文關鍵詞: WVR, precipitation
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 可降水量的變化及掌握,對從事大氣研究方面來說,是一項非常重要的課題。當一些氣象事件例如降雨及颱風的發生,皆與可降水量的變化息息相關。
    本研究利用不同儀器觀測可降水量的變化作探討與比較,分別討論以下四個主題:逆溫、逆濕的影響、反演可降水及液態水的分佈情形、仰角及方位角的變化及GPS、WVR和RAOBs( Radiosonde Observation )三者之間的比較。其中,逆溫、逆濕造成的大氣不穩定性,間接影響到WVR及GPS觀測可降水量的反演係數。而不同仰角的觀測,因相應的光程改變,PW及LWP會有變化。至於不同方位的觀測會受到區域天氣的影響,而GPS、WVR及RAOBs等三種觀測儀器,特徵差異大。
    觀測結果中發現,利用WVR與GPS觀測可降水量的分析,是一項可行的技術。且能有效的改善氣球探空在時間解析度上的不足,而在不同月份上的觀測,可看出季節對可降水量的影響。另外,經由降雨事件的過濾排除,可降低WVR觀測時的差異。


    摘要 表目錄…………………………………………………………………..III 圖目錄…………………………………………………………………..IV 第一章、前言……………………………………………………………1 第二章、理論介紹………………………………………………………3 2-1、WVR方面……………………………………………………...3 2-1-1、射傳遞方程式………………………………………….......3 2-1-2、大氣吸收特性…………………………………………….....7 2-1-3、權重函數………………………………………………….....8 2-2、GPS方面……………………………………………………….9 2-2-1、GPS衛星簡介……………………………………………9 2-2-2、GPS衛星訊號傳播………………………………………9 第三章、儀器介紹及反演方法…………………………………………12 3-1、儀器介紹…………………………………………………….12 3-2、實驗操作…………………………………………………….14 3-3、資料反演方法……………………………………………….15 3-3-1、WVR估算可降水及液態水量…………………………..15 3-3-2、天頂溼遲延量與可降水量的關係…………………….18 第四章、觀測資料分析與討論………………………………………..20 4-1、逆溫、逆濕的影響………………………………………….....20 4-2、反演 PW 及 LWP………………………………………….......26 4-3、仰角與方位角的變化……………………………………….....32 4-4、GPS、WVR及RAOBs的差異……………………………..........52 第五章 、 結論與未來展望…………………………………………..67 參考文獻………………………………………………………………..69

    [1] 劉說安、張銓倫,2000: 地面雙頻微波輻射偵測大氣中水氣含量及溫度剖面,大氣科學。
    [2] 劉說安,1999: 地面微波輻射偵測大氣中可降水之動態,大氣科學。
    [3] 劉說安、楊名,1999: GPS估計可降水量:WVR約束法,大氣科學。
    [4] 曾中一,1988: 大氣遙測:原理與應用,聯經出版事業公司。
    [5] 高而正,1994: 應用地面微波輻射儀量測大氣水汽含量之研究,國立中央大學大氣物理研究所碩士論文。
    [6] 張銓倫,1999: 利用WVR估算可降水量,國立中央大學太空科學研究所碩士論文。
    [7] 鄧諭敦,1999: 利用GPS估算可降水量,國立中央大學太空科學研究所碩士論文。
    [8] Brunner, F. K., and M. Gu, 1991: An Improved Model for Dual
    Frequency Ionospheric Correction of GPS Observation,
    Manuscripta Geodaetica, 16(3), pp. 205-214.
    [9] Beutler, G., E. Brockman, S. Frankhauser, W Gurtner, J.
    Johnson, L. Mervart, M. Rothacher, S. Schaer, T. Springer,
    and R. Weber, 1996: Bernese GPS Software Version 4.0. Univ.
    of Berne, 418 pp.
    [10] Bevis, M., S. Businger, S. Chiswell, T.A. Hrring, R. A.
    Anthes, C.Rocken, and R.H. Ware, 1994: GPS meteorology:
    Mapping Zenith Wet Delay onto Precipitable Water. J. Appl.
    Meteor.,33,379-386.
    [11] Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A.
    Anthes, and R. H. Ware, 1992: GPS meteorology : Remote
    Sensing of Atmospheric Water Vapor Using the Global
    Position System.. J. Geophy. Res.., 97, 15 784-15 801.
    [12] Chang, A.T. C., L. S. Chiu, C. Kummerow, and J. Meng,
    1999 : First Results of the TRMM Microwave Imager (TMI)
    Monthly Oceanic Rain Rate: Comparison with SSM/I. Geophys.
    Res. Lett., 26, 2 379-2 382.
    [13] Duan, J. P., M. Bevis, P. Fang, Y. Bock, S. Chiswell, S.
    Businger, C. Rocken, F.Solheim, T. Vanhove, R. Ware, S.
    Mcclusky, T. A. Herring, R. W. King, 1996:GPS Meteorology:
    Direct Estimation of the Absolute Value of Precipitable
    Water. J. Appl. Meteor., 35, 830-838.
    [14] Elgered, G., J. L. Davis, T. A. Herring, and I. I.Shapiro,
    1991: Geodesy by Radio Interferometry: Water Vapor
    Radiometry for Estimation of the Wet Delay. J. Geophys.
    Res., 96, 6 541-6 555.
    [15] Han, Y. and E. R. Westwater, 1995: Remote Sensing of
    Tropospherics Water Vapor and Cloud Liquid Water by
    Integrated Ground-Based Sensors, J. Atmos. Oceanic
    Technol., 12, 1 050-1 059.
    [16] Güldner, J., and D. Spänkuch, 1999 : Results of Year
    -Round Remotely Sensed Integrated Water Vapor by Ground
    -Based Microwave Radiometry. Amer. Meteor. Soc., 38, 981
    -988.
    [17] Goad, C.C., and L. Goodman, 1974: A Modified Hopfield
    Tropospheric Annual Refraction Correction Model in
    Processing of the Full Meeting of the America Geophysical
    Union, San Francisco, California, December 12-17.
    [18] Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins,
    1997: Global Positioning System Theory and Practice,
    Springer-Verlag, Wien.
    [19] Hofmann-Wellenhof, B., H. Lichtenegger, and J,Collins,
    1993: Global Positioning System: Theory and Practice.
    Springer-Verlag, pp. 326.
    [20] Janssen, M. A., 1993: Atmospheric Remote Sensing by
    Microwave Radiometry. (ed) John Wiley & Sons, Inc., New
    York, pp. 572.
    [21] Liebe, H. J., 1987 : A Contribution to Modeling
    Atmospheric Millimeter- Wave Properties, Frequenz, 41, 31
    -36.
    [22] Liou, Y.-A., C.-Y. Huang, and Y.-T. Teng, 2000a:
    Precipitable Water Observed by Ground-Based GPS Receivers
    and Microwave Radiometry. Earth, Planets, and Space. (in
    press)
    [23] Liou, Y.-A., Y.-T. Teng, Teresa Van Hove, and James
    Liljegren, 2000b: Comparison of precipitable water
    observations in the near tropics by GPS, microwave
    radiometer and radiosondes. J. Appl. Meteor. (in press)
    [24] Liou, Y.-A., and C.-Y. Huang, 2000: GPS Observation of PW
    during the Passage of a Typhoon, Earth, Planets, and Space.
    (in press).
    [25] Radiometrics WVR-1100 Instrument Manual, 1997: WVR-1100
    Water Vapor and Liquid Water Radiometer. Radiometrics
    Corporation, Boulder, Colorado, 30 pp. [Available from
    Radiometrics Corporation, 2840 Wilderness Place Unit G,
    Boulder, CO 80301-5414, USA.]
    [26] Rosenkranz, P. W., and M. J. Komichak, and D. H. Staelin,
    1982: A Method for Estimation of Atmospheric Water Vapor
    Profiles by Microwave Radiometry. J. Appl. Meteor., 21, 1
    364-1 370.
    [27] Schroeder, J. A., and E. R. Westwater, 1991: Users’ Guide
    to WPL Microwave Radiative Transfer Software. NOAA Tech.
    Memo. ERL WPL-213, 84 pp.
    [28] Sierk, B., B. Burki, H. Becker-Ross, S. Florek, R.Neubert,
    L. P. Kruse, and H. Kahle, 1997: Tropospheric Water Vapor
    Derived from Solar Spectrometer, Radiometer, and GPS
    Measurements. J. Geophys. Res., 102, 22 411-22 424.
    [29] Solheim, F., J. R. Godwin, E. R. Westwater, Y. Han, S. J.
    Keihm, K. Marsh, and R. Ware, 1998: Radiometric Profiling
    of Temperature, Water Vapor and Cloud Liquid Water Using
    Various Inversion Methods. Radio Sci., 33, 393-404.
    [30] Ulaby, F. T., R. K. Moore, and A. K. Fung, 1981 :
    Microwave Remote Sensing: Active and Passive Volume 1.
    Artech House Inc., Norwood. pp. 456.
    [31] Westwater, E. R, J. B. Snider, and M. J. Falls, 1990:
    Ground-based Radiometric Observations of Atmospheric
    Emission and Attenuation at 20.6, 31.65, and 90 GHz: A
    Comparison of Measurement and Theory. IEEE Trans. Antennas
    Propag., 38, 1 569-1 580.
    [32] Westwater, E. R., 1978: The Accuracy of Water Vapor and
    Cloud Liquid Determinations by Dual-Frequency Ground-Based
    Microwave Radiometry. Radio Sci., 13(4), 677-685.
    [33] Westwater, E. R., Y. Han, J. B. Snider, K. S. Gage, W.
    Ecklund, A. Riddle, J. H. Churnside, J. A. Shaw, M. J.
    Falls, C. N. Long, and T. P. Ackerman, 1999: Ground-Based
    Remote Sensor Observations During PROBE in the Tropical
    Western Pacific. Bull. Amer. Meteor. Soc., 80(2), 257-270.

    QR CODE
    :::