| 研究生: |
王承賢 Cheng-Xian Wang |
|---|---|
| 論文名稱: |
WVR、GPS及氣球探空觀測可降水量之比較 |
| 指導教授: |
劉說安
Yuei-an Liou |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 太空科學研究所 Graduate Institute of Space Science |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 可降水量 |
| 外文關鍵詞: | WVR, precipitation |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
可降水量的變化及掌握,對從事大氣研究方面來說,是一項非常重要的課題。當一些氣象事件例如降雨及颱風的發生,皆與可降水量的變化息息相關。
本研究利用不同儀器觀測可降水量的變化作探討與比較,分別討論以下四個主題:逆溫、逆濕的影響、反演可降水及液態水的分佈情形、仰角及方位角的變化及GPS、WVR和RAOBs( Radiosonde Observation )三者之間的比較。其中,逆溫、逆濕造成的大氣不穩定性,間接影響到WVR及GPS觀測可降水量的反演係數。而不同仰角的觀測,因相應的光程改變,PW及LWP會有變化。至於不同方位的觀測會受到區域天氣的影響,而GPS、WVR及RAOBs等三種觀測儀器,特徵差異大。
觀測結果中發現,利用WVR與GPS觀測可降水量的分析,是一項可行的技術。且能有效的改善氣球探空在時間解析度上的不足,而在不同月份上的觀測,可看出季節對可降水量的影響。另外,經由降雨事件的過濾排除,可降低WVR觀測時的差異。
[1] 劉說安、張銓倫,2000: 地面雙頻微波輻射偵測大氣中水氣含量及溫度剖面,大氣科學。
[2] 劉說安,1999: 地面微波輻射偵測大氣中可降水之動態,大氣科學。
[3] 劉說安、楊名,1999: GPS估計可降水量:WVR約束法,大氣科學。
[4] 曾中一,1988: 大氣遙測:原理與應用,聯經出版事業公司。
[5] 高而正,1994: 應用地面微波輻射儀量測大氣水汽含量之研究,國立中央大學大氣物理研究所碩士論文。
[6] 張銓倫,1999: 利用WVR估算可降水量,國立中央大學太空科學研究所碩士論文。
[7] 鄧諭敦,1999: 利用GPS估算可降水量,國立中央大學太空科學研究所碩士論文。
[8] Brunner, F. K., and M. Gu, 1991: An Improved Model for Dual
Frequency Ionospheric Correction of GPS Observation,
Manuscripta Geodaetica, 16(3), pp. 205-214.
[9] Beutler, G., E. Brockman, S. Frankhauser, W Gurtner, J.
Johnson, L. Mervart, M. Rothacher, S. Schaer, T. Springer,
and R. Weber, 1996: Bernese GPS Software Version 4.0. Univ.
of Berne, 418 pp.
[10] Bevis, M., S. Businger, S. Chiswell, T.A. Hrring, R. A.
Anthes, C.Rocken, and R.H. Ware, 1994: GPS meteorology:
Mapping Zenith Wet Delay onto Precipitable Water. J. Appl.
Meteor.,33,379-386.
[11] Bevis, M., S. Businger, T. A. Herring, C. Rocken, R. A.
Anthes, and R. H. Ware, 1992: GPS meteorology : Remote
Sensing of Atmospheric Water Vapor Using the Global
Position System.. J. Geophy. Res.., 97, 15 784-15 801.
[12] Chang, A.T. C., L. S. Chiu, C. Kummerow, and J. Meng,
1999 : First Results of the TRMM Microwave Imager (TMI)
Monthly Oceanic Rain Rate: Comparison with SSM/I. Geophys.
Res. Lett., 26, 2 379-2 382.
[13] Duan, J. P., M. Bevis, P. Fang, Y. Bock, S. Chiswell, S.
Businger, C. Rocken, F.Solheim, T. Vanhove, R. Ware, S.
Mcclusky, T. A. Herring, R. W. King, 1996:GPS Meteorology:
Direct Estimation of the Absolute Value of Precipitable
Water. J. Appl. Meteor., 35, 830-838.
[14] Elgered, G., J. L. Davis, T. A. Herring, and I. I.Shapiro,
1991: Geodesy by Radio Interferometry: Water Vapor
Radiometry for Estimation of the Wet Delay. J. Geophys.
Res., 96, 6 541-6 555.
[15] Han, Y. and E. R. Westwater, 1995: Remote Sensing of
Tropospherics Water Vapor and Cloud Liquid Water by
Integrated Ground-Based Sensors, J. Atmos. Oceanic
Technol., 12, 1 050-1 059.
[16] Güldner, J., and D. Spänkuch, 1999 : Results of Year
-Round Remotely Sensed Integrated Water Vapor by Ground
-Based Microwave Radiometry. Amer. Meteor. Soc., 38, 981
-988.
[17] Goad, C.C., and L. Goodman, 1974: A Modified Hopfield
Tropospheric Annual Refraction Correction Model in
Processing of the Full Meeting of the America Geophysical
Union, San Francisco, California, December 12-17.
[18] Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins,
1997: Global Positioning System Theory and Practice,
Springer-Verlag, Wien.
[19] Hofmann-Wellenhof, B., H. Lichtenegger, and J,Collins,
1993: Global Positioning System: Theory and Practice.
Springer-Verlag, pp. 326.
[20] Janssen, M. A., 1993: Atmospheric Remote Sensing by
Microwave Radiometry. (ed) John Wiley & Sons, Inc., New
York, pp. 572.
[21] Liebe, H. J., 1987 : A Contribution to Modeling
Atmospheric Millimeter- Wave Properties, Frequenz, 41, 31
-36.
[22] Liou, Y.-A., C.-Y. Huang, and Y.-T. Teng, 2000a:
Precipitable Water Observed by Ground-Based GPS Receivers
and Microwave Radiometry. Earth, Planets, and Space. (in
press)
[23] Liou, Y.-A., Y.-T. Teng, Teresa Van Hove, and James
Liljegren, 2000b: Comparison of precipitable water
observations in the near tropics by GPS, microwave
radiometer and radiosondes. J. Appl. Meteor. (in press)
[24] Liou, Y.-A., and C.-Y. Huang, 2000: GPS Observation of PW
during the Passage of a Typhoon, Earth, Planets, and Space.
(in press).
[25] Radiometrics WVR-1100 Instrument Manual, 1997: WVR-1100
Water Vapor and Liquid Water Radiometer. Radiometrics
Corporation, Boulder, Colorado, 30 pp. [Available from
Radiometrics Corporation, 2840 Wilderness Place Unit G,
Boulder, CO 80301-5414, USA.]
[26] Rosenkranz, P. W., and M. J. Komichak, and D. H. Staelin,
1982: A Method for Estimation of Atmospheric Water Vapor
Profiles by Microwave Radiometry. J. Appl. Meteor., 21, 1
364-1 370.
[27] Schroeder, J. A., and E. R. Westwater, 1991: Users’ Guide
to WPL Microwave Radiative Transfer Software. NOAA Tech.
Memo. ERL WPL-213, 84 pp.
[28] Sierk, B., B. Burki, H. Becker-Ross, S. Florek, R.Neubert,
L. P. Kruse, and H. Kahle, 1997: Tropospheric Water Vapor
Derived from Solar Spectrometer, Radiometer, and GPS
Measurements. J. Geophys. Res., 102, 22 411-22 424.
[29] Solheim, F., J. R. Godwin, E. R. Westwater, Y. Han, S. J.
Keihm, K. Marsh, and R. Ware, 1998: Radiometric Profiling
of Temperature, Water Vapor and Cloud Liquid Water Using
Various Inversion Methods. Radio Sci., 33, 393-404.
[30] Ulaby, F. T., R. K. Moore, and A. K. Fung, 1981 :
Microwave Remote Sensing: Active and Passive Volume 1.
Artech House Inc., Norwood. pp. 456.
[31] Westwater, E. R, J. B. Snider, and M. J. Falls, 1990:
Ground-based Radiometric Observations of Atmospheric
Emission and Attenuation at 20.6, 31.65, and 90 GHz: A
Comparison of Measurement and Theory. IEEE Trans. Antennas
Propag., 38, 1 569-1 580.
[32] Westwater, E. R., 1978: The Accuracy of Water Vapor and
Cloud Liquid Determinations by Dual-Frequency Ground-Based
Microwave Radiometry. Radio Sci., 13(4), 677-685.
[33] Westwater, E. R., Y. Han, J. B. Snider, K. S. Gage, W.
Ecklund, A. Riddle, J. H. Churnside, J. A. Shaw, M. J.
Falls, C. N. Long, and T. P. Ackerman, 1999: Ground-Based
Remote Sensor Observations During PROBE in the Tropical
Western Pacific. Bull. Amer. Meteor. Soc., 80(2), 257-270.