| 研究生: |
邱秀玫 Hsiu-Mei Chiu |
|---|---|
| 論文名稱: |
利用表面電漿共振儀及恆溫滴定微卡計探討微脂粒與類澱粉胜肽交互作用之動力學及熱力學研究 Kinetics and Thermodynamics of Liposome & ß-amyloid Interactions by Surface Plasmon Resonance and Isothermal Titration Microcalorimetry |
| 指導教授: |
陳文逸
Wen-Yih Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 134 |
| 中文關鍵詞: | 動力學 、表面電漿共振儀 、類澱粉胜肽 、阿茲海默症 、微脂粒 、焓 |
| 外文關鍵詞: | beta-amyloid, kinetics, surface plasmon resonance, enthalpy, liposome, Alzheimer''s disease |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
類澱粉胜肽(ß-amyloid,Aß)被認為是引起阿茲海默症的主要原因。Aß是具有自我聚集能力的兩性胜肽,一但從單體聚集至纖維狀(fibril)的結構就會毒殺神經細胞,但到目前為止Aß是如何引發細胞毒性及疾病的作用機制仍然不清楚,所以本研究主要是探討Aß與微脂粒之交互作用,以不同培養時間的Aß與不同組成之微脂粒(DPPC、DPPG添加GM1及膽固醇)進行討論,以期能說明Aß與細胞膜之作用行為。整個研究的主題分為兩個部份,第一部份是利用圓二色光譜儀(CD)、螢光光譜儀(Fluorescence spectroscopy)及原子力顯微鏡(AFM)偵測Aß隨培養時間其結構的變化;第二部份是利用表面電漿共振儀(SPR)及恆溫滴定微卡計(ITC)探討Aß與微脂粒交互作用之動力學及熱力學。
在Aß結構的偵測方面,培養ㄧ天後於AFM的結果可看到纖維狀的形成,螢光及CD的結果也都可發現相同的現象。在Aß與微脂粒交互作用之動力學研究方面,培養零天的Aß與不同組成微脂粒作用其親和力大小為DPPG>DPPC/DPPG(75:25 molar ratio)>DPPC/GM1/膽固醇(5:3:2 molar ratio)>DPPG/20 mole%膽固醇>DPPC。由親和力強度可判斷培養零天的Aß與不同組成微脂粒交互作用主要是靠靜電作用力。並可發現Aß對於GM1有較高的親和力;膽固醇的添加會降低微脂粒的流動性而改變了Aß與微脂粒的交互作用,特別於吸附量與吸附後膜結構之維持。培養ㄧ天的Aß與微脂粒作用其親和力大小為DPPC>DPPG/20 mole%膽固醇>DPPC/DPPG(75:25 molar ratio)>DPPG>DPPC/GM1/cholesterol(5:3:2 molar ratio)。由親和力強度可判斷培養一天的Aß與不同組成微脂粒交互作用主要是靠疏水作用力。以上結果初步地說明了Aß與細胞膜之作用機制與Aß培養時間不同而有所改變。在Aß與微脂粒交互作用之熱力學研究方面,由熱量變化可以發現靜電作用力及疏水作用力會同時存在。
ß-amyloid(Aß)was believed to cause the prime factor of Alzheimer’s disease. However, the mechanism of the cytotoxicity and the disease caused by Aß is still unclear. The goal of this work is to study the interactions of various incubated time of Aß with designed liposomes. The objective of this investigation was achived by the following studies : The structural and aggrergation information of Aß by by circular dichroism spectroscopy(CD), by Thioflavin T fluorescence assay and monitored by atomic force microscopy(AFM). Futhermore, this investigation utilized surface plasmon resonance (SPR) and isothermal titration microcalorimetry (ITC) to measure the kinetics and binding enthalpy of Aß with the liposomes.
Kinetics of interactions of Aß and liposomes by SPR reveal the driving force of fresh Aß interacts with various liposomes is electrostatics. And fresh Aß have high affinity with GM1. Addition of cholesterol to the liposome could alter membrane fluidity and affect the interactions of fresh Aß with liposomes especially in the amount of absorbed Aß and maintained the structure of liposome after adsorbing. The driving force of the 1 day of incubation of Aß interacts with various liposomes is hydrophobicity. The binding enthalpy measurements between Aß and liposomes by ITC are endothermic reaction. When the composition of liposome is zwitterionic lipids, the interaction of Aß with liposomes is predominantly hydrophobic force; in contrast with the drive force of interaction of charged lipid with Aß is electrostatic force.
[1] Ritchie R. H., "Plasma losses by fast electrons in thin films," Physical Review, 1957, 106, 874
[2] Nice E.C. and B. Catimel, "Instrumental biosensors: new perspectives for the analysis of biomolecular interactions," BioEssay, 1999, 21, 4, 339-352
[3] Stenberg E., B. Persson, H. Roos and C. Urbaniczky, "Quantitative Determination of Surface Concentration of Protein with Surface Plasmon Resonance Using Radiolabeled Proteins," Journal of Colloid and Interface Science, 1991, 143, 513-526
[4] Watts H. J., D. Yeung and H. Parkes, "Real-time Detection and Quantification of DNA Hybridization by an Optical Biosensor," Analytical Chemistry, 1995, 67, 4283-4289
[5] Minunni M, "Simultaneous determination of β2-microglobulin and IgE using real-time biospecific interaction analysis (BIA)," Analytical Letters, 1995, 28, 933-944
[6] Lackmann M, T. Bucci, R. J. Mann, L. A. Kravets, E. Viney, F. Smith, R. L. Moritz, W. Carter, R. J. Simpson and N. A. Nicola, "Purification of a ligand for the EPH-like receptor HEK using a biosensor-based affinity detection approach," Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 2523-2527
[7] Markgren P. O., M. Hamalainen and U. Danielson, "Screening of compounds interacting with HIV-1 proteinase using optical biosensor technology," Analytical Biochemistry, 1999, 265, 340-350
[8] Zeder L. G., A. R. Neurath and M. H. Van Regenmortel, "Kinetics of interaction between 3-hydroxyphthaloyl-beta-lactoglobulin and CD4 molecules," Biologicals, 1999, 27, 29-34
[9] Morton T. A. and D. G. Myszka, "Kinetic analysis of macromolecular interactions using surface plasmon resonance biosensors," Methods Enzymol, 1998, 295, 268-294
[10]Myszka D. G., M. D. Jonsen and B. J. Graves, "Equilibrium analysis of high affinity interactions using BIACORE," Analytical Biochemistry, 1998, 26, 326-330.
[11]Roos H., R. Karlsson, H. Nilshans and A. Persson, "Thermodynamic analysis of protein interactions with biosensor technology," Journal of Molecular Recognition: JMR, 1998, 11, 204-210
[12]Rebecca L. R. and D. G. Myszka, "Advance in Surface plasmon resonance biosensor analysis," Current opinion in biotechnology, 2000, 11, 54-61
[13]簡汎清, "超高解析度表面電漿共振生物感測器之研製," 碩士論文, 國立中央大學機械工程研究所, 2003
[14]Nenninger G. G., J. Homola, S. S. Yee and P. Tobiska, "Long-range surface plasmons for high resolution surface plasmon resonance sensors," Sensors and Actuators B, 2001, 74, 145-151
[15]Salamon Z., M. F. Brown and G. Tollin, "Plasmon resonance spectroscopy: probing molecular interactions within membranes," Trends in Biochemical Sciences, 1999, 24, 214-219
[16]F.-C.Chien and S.-J. Chen, "A sensitivity comparison of optical biosensors based on four different surface plasmon resonance modes," Biosensors and Bioelectronics, 2004, 20, 633-642
[17]Liebermann T., W. Knoll, P. Sluka and R. Herrmann, "Complement Hybridization from Solution to Surface Attached Probe Oligonucleotides Observed by Surface Plasmon Field Enhanced Fluorescence Spectroscopy" Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 169, 337-350
[18]Hutter E. and M. P. Pileni, "Detection of DNA Hybridization by Gold Nanoparticle Enhanced Transmission Surface Plasmon Resonance Spectroscopy," The Journal of Physical Chemistry B, 2003, 107, 27, 6497-6499
[19]Lyon L. A., M. D. Musick and M. J. natan, "Colloidal Au-Enhanced Surface Plasomn Resonance Immunosensing," Analytical Chemistry, 1998, 70, 5177-5183
[20]Hu W. P., S. J. Chen, K. T. Huang, J. H. Hsu, W. Y. Chen, G. L. Chang and K. A. Lai, "A novel ultrahigh-resolution surface plasmon resonance biosensor with an Au nanocluster-embedded dielectric film," Biosensors and Bioelectronics, 2004, 19, 1465-1471
[21]高立安, "以表面電漿共振儀研究單股去氧核醣核酸之二級結構於去氧核醣核酸雜交在動力學與反應機制的效應," 碩士論文, 國立中央大學化學工程與材料工程研究所, 2004
[22]Lambert M. P., A. K. Barlow, B.A. Chromy, C. Edwards, R. Freed, M. Liosatos, T. E. Morgan, I.Rozovsky, B.Trommer, K. L.Viola, P.Wals, C. E. Finch, G. A. Krafft and W. L. Klein,”Diffusible, nonfibrillar ligands derived from Aß1-42 are potent central nervous system neurotoxins.” Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 6448-6453
[23]Wood W. G, G. P. Eckert, U. Igbavboa, W. E. Muller,” Amyloid beta-protein interactions with membranes and cholesterol:causes or casualties of Alzheimer’s disease.” Biochimica et Biophysica Acta, 2003, 1610 281– 290
[24]蔡元彰,”功能性基因體學與阿茲海默氏症之新藥開發.”化工
資訊2002, 6, 36-40
[25]Cappai R. and A. R. White,” Molecules in focus Amyloid ß.” The
International Journal of Biochemistry & Cell Biology, 1999, 31,
885-889
[26] Yanming X. and K. Higuchi,”Amyloid fibril proteins,” Mechanisms of Ageing and Development, 2002, 123 , 1625-1636
[27] Hardy J. and D. J. Selkoe,” The Amyloid Hypothesis of Alzheimer’s Disease : Progress and Problems on the Road to Therapeutics.” Science, 2002, 297, 353-356
[28]胡明寬,廖笳因,黃詩雅,”阿茲海默症藥物開發與治療.”Chemistry (The Chinese Chem. Soc. Taipei), 2003, 61, 4, 645-653
[29] Kakio A., S.I. Nishimoto, K.Yanagisawa, Y.Kozutsumii, K. Matsuzaki,”Cholesterol-dependent Formation of GM1 Ganglioside-bound Amyloid ß-Protein, an Endogenous Seed for Alzheimer Amyloid,” The Journal Of Biological Chemistry, 2001, 276, 27, 24985-24990
[30] Bieschke J, Q. Zhang, E. T. Powers, R. A. Lerner, and J. W. Kelly, ” Oxidative Metabolites Accelerate Alzheimer’s Amyloidogenesis by a Two-Step Mechanism, Eliminating the Requirement for Nucleation.” Biochemistry, 2005, 44, 4977-4983
[31] Sabate R., M. Gallardo, J. Estelrich,” Temperature dependence of the nucleation constant rate in ß amyloid fibrillogenesis.” International Journal of Biological Macromolecules, 2005, 35, 9-13
[32] Mattson M.P.,”Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives.” Physiological Reviews, 1997, 1081-1132
[33] Terzi E., G. Holzemann, and J. Seelig,” Interaction of Alzheimer ß-Amyloid Peptide(1-40) with Lipid Membranes.”Biochemistry, 1997, 36, 14845-14852
[34] Green J.D., L. Kreplak, C. Goldsbury, X. Li Blatter, M. Stolz,
G.S. Cooper, A. Seelig, J. Kistler and U. Aebi,” Atomic Force Microscopy Reveals Defects Within Mica Supported Lipid Bilayers Induced by the Amyloidogenic Human Amylin Peptide.” Journal of Molecular Biology, 2004, 342, 877-887
[35] Jarrett J.T., Lansbury P.T. JR., “Seeding one dimensional crystallization of amyloid: a pathogenic mechanism in Alzheimer´s disease and scrapie? ” Cell, 1993, 73, 1055-1058
[36] Lomakin A., D. S. Chung, G. B. Benedek, D. A. Kirschner, and D. B. Teplow ,”On the nucleation and growth of amyloid ß-protein fibrils: Detection of nuclei and quantitation of rate constants.” Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 1125-1129
[37] McLaurin J, T. Franklin, P. E. Fraser, and A. Chakrabartty,” Structural Transitions Associated with the Interaction of Alzheimer ß-Amyloid Peptides with Gangliosides.” The Journal of Biological Chemistry, 1998, 273, 8, 4506-4515
[38] Ban T., M. Hoshino, S. Takahashi, D. Hamada,K. Hasegawa, H. Naiki and Y. Goto,” Direct Observation of Aß Amyloid Fibril Growth and Inhibition.” Journal of Molecular Biology, 2004, 344, 757-767
[39] Serpell L.C.,” Alzheimer''s amyloid fbrils: structure and assembly.”
Biochimica et Biophysica Acta, 2000, 1502, 16-30
[40] Terzi1 E., G. Holzemann and J. Seelig,”Self-association of ß-Amyloid Peptide(1–40) in Solution and Binding to Lipid Membranes.” Journal of Molecular Biology, 1995, 252, 633-642
[41] Matsuzaki K. and C. Horikiri,”Interactions of Amyloid ß-Peptide (1-40) with Ganglioside-Containing Membranes.”Biochemistry, 1999, 38, 4137-4142
[42] KAKIO A., Y. YANO, D. TAKAI, Y. KURODA, O. MATSUMOTO, Y. KOZUTSUMI and K MATSUZAKI,”Interaction Between Amyloid β-Protein Aggregates and Membranes.” Journal of Peptide Science, 2004, 10, 612-621
[43]Liu R., B. Yuan,S. Emadi,A. Zameer,P. Schulz,C. McAllister,Y. Lyubchenko,G. Goud and M. R. Sierks,”Single Chain Variable Fragments against ß-Amyloid (Aß) Can Inhibit Aß Aggregation and Prevent Aß -Induced Neurotoxicity.” Biochemistry, 2004, 43, 6959-6967
[44] Ji S. R., Y. Wu, and S. F. Sui,”Cholesterol Is an Important Factor Affecting the Membrane Insertion of ß-Amyloid Peptide (Aß1–40), Which May Potentially Inhibit the Fibril Formation.” The Journal of Biological Chemistry, 2002, 277, 8, 6273–6279
[45] Crescenzi1 O., S. Tomaselli, R. Guerrini, S. Salvadori, A. M. D’Ursi ,P. A. Temussi1 and D. Picone1,”Solution structure of the Alzheimer amyloid ß-peptide (1–42) in an apolar microenvironment Similarity with a virus fusion domain.” European Journal of Biochemistry, 2002, 269, 5642-5648
[46] Kremer J. J., M. M. Pallitto, D. J. Sklansky, and R. M. Murphy,”Correlation of ß-Amyloid Aggregate Size and Hydrophobicity with Decreased Bilayer Fluidity of Model Membranes.”Biochemistry, 2000, 39, 10309-10318
[47] Wood S. J., B. Maleeff, T. Hart and R. Wetzel,” Physical, Morphological and Functional Differences between pH 5.8 and 7.4 Aggregates of the Alzheimer’s Amyloid Peptide Aß.” Journal of Molecular Biology, 1996, 256, 870–877
[48] Gursky O., S. Aleshkov ,” Temperature-dependent L-sheet
formation in L-amyloid Aß1-40 peptide in water: uncoupling
ß-structure folding from aggregation.” Biochimica et Biophysica Acta, 2000, 1476, 93-102
[49] Ariga T., K. Kobayashi , A. Hasegawa, M. Kiso, H. Ishida,T. Miyatake,”characterization of high-affinity binding between ganglioside and amyloid ß-protein.”archives of biochemistry and biophysics, 2001, 388, 225-230
[50] Schladitz C, E. P. Vieira, H. Hermel, and H. Mohwald,”
Amyloid-ß-Sheet Formation at the Air-Water Interface.” Biophysical
Journal , 1999, 77, 3305-3310
[51] Choo-Smith L. P., W. K. Surewicz,”The interaction between Alzheimer amyloid ß (1-40) peptide and ganglioside GM1-containing membranes.” FEBS Letters, 1997, 402, 95-98
[52] 林佳佳,”穿膜胜肽與生物細胞膜間的交互作用之探討(Ι)-膽固醇的含量對蜂毒胜肽穿膜機制之影響,”碩士論文, 國立中央大學化學工程與材料工程研究所, 2004
[53]Bokvist M. , F. Lindstrom , A. Watts and G. Grobner ,”Two Types of Alzheimer’s ß-Amyloid (1-40) Peptide Membrane Interactions:Aggregation Preventing Transmembrane Anchoring Versus Accelerated Surface Fibril Formation.” Journal of Molecular Biology, 2004, 335, 1039-1049
[54] Yip C. M., E. A. Elton, A. A. Darabie , M. R. Morrison and J. McLaurin,” Cholesterol, a Modulator of Membrane-associated
Aß-Fibrillogenesis and Neurotoxicity.” Journal of Molecular
Biology, 2001, 311,
723-734
[55] Kremer J. J. , R. M. Murphy,”kinetics of adsorption of ß-amyloid peptide Aß (1~40) to lipid bilayers.” Journal of Biochemical and Biophysical Methods, 2003, 57, 159-169
[56] Valdes-Gonzalez T. , J. Inagawa , T. Ido ,”neuropeptides interact with glycolipid receptors a surface plasmon resonance Study.” Peptides , 2001, 22 , 1099-1106
[57] Seelig J.,” Thermodynamics of lipid–peptide interactions.” Biochimica et Biophysica Acta, 2004, 1666, 40- 50
[58] Ege C. and K. Y. C. Lee,” Insertion of Alzheimer’s Aß40 Peptide into Lipid Monolayers.” Biophysical Journal, 2004, 87, 1732-1740
[59] Wood, W. G., Schroeder, F., Avdulov, N. A.,Chochina, S. V. & Igbavboa, U. ,“Recent advances in brain cholesterol dynamics: transport, domains, and Alzheimer''s disease.” Lipids, 1999, 34, 225-234
[60] Shyu w. C., “ Introduction of Alzheimer’s Disease Treatment.”The Journal of Long-Tem Care 2004, 7, 4, 305-316
[61]”Aricept, Exelon and Reminyl- the new drugs for Alzheimer’s disease.” ALZHEIMER’S SOCIETY INFORMATION SHEET , 2001, 407
[62] Kremer J. J., D. J. Sklansky, and R. M. Murphy,” Profile of Changes in Lipid Bilayer Structure Caused by ß-Amyloid Peptide.” Biochemistry, 2001, 40, 8563-8571
[63] Hasegawa K., K. Ono, M. Yamada, and H. Naiki,” Kinetic Modeling and Determination of Reaction Constants of Alzheimer’s
ß-Amyloid Fibril Extension and Dissociation Using Surface Plasmon Resonance.” Biochemistry, 2002, 41, 13489-13498
[64] Shen C. L., R. M. Murphy,” Solvent Effect on Self-Assembly of ß-Amyloid Peptide.”Biophysical Journal, 1995, 69, 640-651
[65] Crescenzi O. , S. Tomaselli, R. Guerrini, S. Salvadori, A. M. D’Ursi,
P. A. Temussi1 and D. Picone.” Solution structure of the Alzheimer amyloid ß-peptide (1–42) in an apolar microenvironment
Similarity with a virus fusion domain.” European Journal of Biochemistry, 2002, 269, 5642-5648
[66] Yip C. M. and J. McLaurin,” Amyloid-ß Peptide Assembly: A Critical Step in Fibrillogenesis and Membrane Disruption.” Biophysical Journal, 2001, 80, 1359-1371
[67] McLaurin J. and A. Chakrabartty,” Membrane Disruption by Alzheimer b-Amyloid Peptides Mediated through Specific Binding to Either Phospholipids or Gangliosides.” The Journal of Biological Chemistry, 1996, 271, 43, 26482-26489
[68] Kakio A., S. Nishimoto, K. Yanagisawa, Y. Kozutsumi, and K.Matsuzaki ,” Interactions of Amyloid ß-Protein with Various Gangliosides in Raft-Like Membranes: Importance of GM1 Ganglioside-Bound Form as an Endogenous Seed for Alzheimer Amyloid.” Biochemistry, 2002, 41, 7385-7390
[69] Allsop D., L. Swanson, S. Moore, Y. Davies, A. York,
O. M.A. El-Agnaf, and I. Soutar ,” Fluorescence Anisotropy: A Method for Early Detection of Alzheimer ß-Peptide (Aß) Aggregation.” Biochemical and Biophysical Research Communications, 2001, 285, 58-63
[70] KOWALEWSKI T. AND D. M. HOLTZMAN,” In situ atomic force microscopy study of Alzheimer’s ß-amyloid peptide on different substrates: New insights into mechanism of ß-sheet formation.” Proceedings of the National Academy of Sciences of the United States of America, 1999, 96, 3688-3693
[71] Yip C. M., A. A. Darabie and J. McLaurin,” Aß42-Peptide Assembly on Lipid Bilayers.” Journal of Molecular Biology, 2002, 318, 97-107
[72] Wakabayashi M. , T. Okada , Y. Kozutsumi , K. Matsuzaki ,”GM1 ganglioside-mediated accumulation of amyloid ß-protein on cell membranes.”Biochemical and Biophysical Communications, 2005, 328, 1019-1023
[73] Goldsbury C. S., S. Wirtz, S. A. Muller, S. Sunderji, P. Wicki, U. Aebi, P. Frey,” Studies on the in Vitro Assembly of Aß1-40: Implications for the Search for Aß Fibril Formation Inhibitors.”Journal of Structure Biology, 2000, 130,217-231
[74] Papo N. and Y. Shai ,” Exploring Peptide Membrane Interaction Using Surface Plasmon Resonance:Differentiation between Pore Formation versus Membrane Disruption by Lytic Peptides.” Biochemistry, 2003, 42, 458-466
[75] Mozsolits H., H.-J.Wirth, J. Werkmeister, M.-I. Aguilar,” Analysis of antimicrobial peptide interactions with hybrid bilayer membrane systems using surface plasmon resonance,” Biochimica et Biophysica Acta, 2001, 1512 , 64-76
[76] Morton T. A., D. G. Myszka, and I. M. Chaiken,” Interpreting Complex Binding Kinetics from Optical Biosensors: A Comparison of Analysis by Linearization, the Integrated Rate Equation, and Numerical Integration.” Analitical Biochemistry, 1995, 227, 176-185
[77] Hahnefeld C., S. Drewianka, and F. W. Herberg,” Determination of Kinetic Data Using Surface Plasmon Resonance Biosensors.” Molecular Diagnosis of Infectious Diseases, Methods in Molecular Medicine, 94, 299-320
[78] Lahiri J, P. Kalal, A. G. Frutos, S. J. Jonas, and R. Schaeffler, “Method for Fabricating Supported Bilayer Lipid Membranes on Gold.” Langmuir, 2000, 16, 7805-7810
[79] Foguel D. and J. L. Silva,” New Insights into the Mechanisms of Protein Misfolding and Aggregation in Amyloidogenic Diseases Derived from Pressure Studies.”Biochemistry, 2004, 43, 36, 11362-11370
[80] Watanabe K., T. Segawa,K. Nakamura,M. Kodaka,T. Konakahara,H. Okuno,” Identifcation of the molecular interaction site of
amyloid ß peptide by using a fuorescence assay.” The Journal of Peptide Research : Official Journal of the American Peptide Society, 2001, 58, 42-346
[81] Terzi E., G. Holzemann,and J. Seelig,” Reversible Random Coil—ß-Sheet Transition of the Alzheimer ß-Amyloid Fragment(25-35).” Biochemistry, 1994, 33, 1345-1350
[82] Mozsolits H., M. I. Aguilar,” Surface Plasmon Resonance
Spectroscopy: An EmergingTool for the Study of Peptide–Membrane Interactions.” Biopolymers (Peptide Science), 2002, 66, 3-18