跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張仲堯
ZHONG-YAO ZHANG
論文名稱: 利用熱壓製造類多孔隙介質之 微流道模型研究
指導教授: 曹嘉文
Chia-Wen Tsao
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 94
中文關鍵詞: 微流道熱壓製程
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 自然界有許多現象無法被直接觀測,例如岩層孔隙內蘊涵的原油透過強化注水增加採油效率時的微觀動態變化。微模型的應用使得許多流體的現象得以被直接觀測,而傳統用於研究兩相流的微模型多以玻璃為主,利用蝕刻的方式製造流道,這種微模型受限於製造方式而缺乏尺度設計彈性;此外也有利用聚二甲基矽氧烷(PDMS)製作微流道模型,但其易被浸潤及易變形的特性使其不適合做流體觀測。
    本研究利用在生醫領域已廣泛利用的微流體晶片技術,先以微影的方式在光滑的矽基材上製作微模型的母模,再透過熱壓印及熱接合方法,製作以環烯烴共聚物(COC)為基材的微流體模型,具有高透明、高剛性、耐酸鹼醇酮、吸水率極低等特性,配合流量控制的針管儀器及觀測設備組成兩相流觀測系統,可進行流體現象的實驗及分析。
    本實驗所製作的微流體模型兼具設計上的彈性、精準的尺度,以及低成本、低複雜度,非常適合實驗室使用,此外更由於基材可進一步加工改質或鍍膜,具有更多應用的方向,所以未來發展極具潛力。


    There are many phenomena in nature that we cannot observed directly, such as the microscopic dynamics change within the rock pores when increase the water flooding rate. Applied Micro models make a lot of fluid phenomena to be observed directly. Traditional micro-models made of glass, and the channels manufactured by etching way. The models were limited by the lack of design flexibility. Other kinds of micro models such as Polydimethylsiloxane (PDMS) microfluidic models were not suitable for observation because of its easily infiltration and deformation.
    In this study, we use the microfluidic chip technology which has been widely used in biomedical field to manufacture the micro model. First, we made the master mold by lithography on smooth silicon substrate, and then made micro model by hot embossing and thermal bonding method. Cyclic olefin copolymer (COC) was the substrate for the model because of excellent chemical and mechanical properties. The model connected steel needles and observation equipment to experiment with controlled flow.
    Micro model in this experiment were designing flexibility, precision scales, low cost, low complexity, very suitable for laboratory using. More applications direction due to the substrate modified or coated, showing great potential for future development.

    目錄 中文摘要 i Abstract ii 誌謝 iii 圖目錄 vi 第一章 緒論 x 1.1前言 1 1.2激勵採油法 (enhanced oil recovery, EOR) 3 1.3熱塑微流體晶片製造技術 7 1.4文獻回顧 11 1.5 研究動機與目的 23 1.6 論文架構 24 第二章 微熱壓印製程與技術 25 2.1 材料的選擇與預處理 25 2.2 加熱與加壓製程 30 2.3 脫模以及接合 34 2.4多孔矽材料層製備 37 2.5氧電漿親水性改質 40 第三章 實驗器材與步驟 43 3.1實驗器材 43 3.2實驗步驟 43 3.2.1流道設計 43 3.2.2母模製備: 微影製程製作矽晶圓母模步驟 44 3.2.3 基材前處理: 49 3.2.4 熱壓製程 : 50 3.2.5. 接合製程: 52 3.2.6後續處理及測試 54 第四章 實驗結果與討論 56 第五章 結論與建議 75 參考文獻 79

    1. Nikolaos Konstantinou Karadimitriou.<Two-phase flow experimental studies in micro-models.pdf>.2013

    2. Armstrong, R.T. and D. Wildenschild, Investigating the pore-scale mechanisms of microbial enhanced oil recovery. Journal of Petroleum Science and Engineering, 2012. 94-95: p. 155-164.

    3. Liu, K. and Z.H. Fan, Thermoplastic microfluidic devices and their applications in protein and DNA analysis. Analyst, 2011. 136(7): p. 1288-97.

    4. Kang-Yi Lien, W.-Y.L., <Microfluidic Systems Integrated With a Sample pretreatment Device for Fast Nucleic-Acid Amplification.pdf>. 2008.

    5. Neethirajan, S., et al., Microfluidics for food, agriculture and biosystems industries. Lab Chip, 2011. 11(9): p. 1574-86.

    6. M. Heckele, W.B., K.D. Mu¨ ller, <Hot embossing - The molding technique for plastic microstructures.pdf>. 1998.
    7. Lutz, S., et al., Microfluidic lab-on-a-foil for nucleic acid analysis based on isothermal recombinase polymerase amplification (RPA). Lab Chip, 2010. 10(7): p. 887-93.

    8. Kricka, L.J., et al., Fabrication of plastic microchips by hot embossing. Lab Chip, 2002. 2(1): p. 1-4.

    9. Becker, H.G., C., Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem, 2008. 390(1): p. 89-111.

    10. Becker, H. and C. Gartner, Polymer microfabrication technologies for microfluidic systems. Analytical and Bioanalytical Chemistry, 2008. 390(1): p. 89-111.

    11. Worgull, M., et al., Hot embossing of microstructures: characterization of friction during demolding. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2008. 14(6): p. 767-773.

    12. Hsu, T.R., Packaging design of microsystems and meso-scale devices. Ieee Transactions on Advanced Packaging, 2000. 23(4): p. 596-601.

    13. Liu, C., Recent developments in polymer MEMS. Advanced Materials, 2007. 19(22): p. 3783-3790.

    14. Becker, H. and U. Heim, Hot embossing as a method for the fabrication of polymer high aspect ratio structures. Sensors and Actuators a-Physical, 2000. 83(1-3): p. 130-135.

    15. Liu, J.S., et al., Electrostatic bonding of a silicon master to a glass wafer for plastic microchannel fabrication. Journal of Materials Processing Technology, 2006. 178(1-3): p. 278-282.

    16. Koesdjojo, M.T., Y.H. Tennico, and V.T. Reincho, Fabrication of a microfluidic system for capillary electrophoresis using a two-stage embossing technique and solvent welding on poly(methyl methacrylate) with water as a sacrificial layer. Analytical Chemistry, 2008. 80(7): p. 2311-2318.

    17. Steigert, J., et al., Rapid prototyping of microfluidic chips in COC. Journal of Micromechanics and Microengineering, 2007. 17(2): p. 333-341.

    18. Li, J.M., et al., Hot embossing/bonding of a poly(ethylene terephthalate) (PET) microfluidic chip. Journal of Micromechanics and Microengineering, 2008. 18(1): p. 015008.

    19. Li, J., et al., Fabrication of a thermoplastic multilayer microfluidic chip. Journal of Materials Processing Technology, 2012. 212(11): p. 2315-2320.

    20. Kolew, A., et al., Hot embossing of thermoplastic multilayered stacks. Microsystem Technologies, 2012. 18(11): p. 1857-1861.

    21. ), M.Y.C. and P.F. , Glass bead micromodel study of solute transport. 1999.

    22. Cheng, J.T. and N. Giordano, Fluid flow through nanometer-scale channels. Physical Review E, 2002. 65(3).

    23. <多相流於孔隙介質中主要流動機制之微模型實驗與研究.pdf>.

    24. Dong, M., Q. Liu, and A. Li, Displacement mechanisms of enhanced heavy oil recovery by alkaline flooding in a micromodel. Particuology, 2012. 10(3): p. 298-305.

    25. Mohammadi, S., M. Hossein Ghazanfari, and M. Masihi, A pore-level screening study on miscible/immiscible displacements in heterogeneous models. Journal of Petroleum Science and Engineering, 2013. 110: p. 40-54.

    26. Worgull, M., et al., Hot embossing of high performance polymers. Microsystem Technologies, 2010. 17(4): p. 585-592.

    27. 莊朝印, 邱., 聚烯烴彈性體於結晶/非結晶摻合體影響效應之研究. 2008.

    28. Worgull, M., et al., Hot embossing of microstructures: characterization of friction during demolding. Microsystem Technologies, 2008. 14(6): p. 767-773.

    29. Sahli, M., et al., Experimental analysis and numerical modelling of the forming process of polypropylene replicas of micro-cavities using hot embossing. Microsystem Technologies-Micro-and Nanosystems-Information Storage and Processing Systems, 2009. 15(6): p. 827-835.

    30. Li, J.M., et al., Hot embossing/bonding of a poly(ethylene terephthalate) (PET) microfluidic chip. Journal of Micromechanics and Microengineering, 2008. 18(1): p. -.

    31. Heckele, M. and W.K. Schomburg, Review on micro molding of thermoplastic polymers. Journal of Micromechanics and Microengineering, 2004. 14(3): p. R1-R14.

    32. Yi, L., X.D. Wang, and Y. Fan, Microfluidic chip made of COP (cyclo-olefin polymer) and comparion to PMMA (polymethylmethacrylate) microfluidic chip. Journal of Materials Processing Technology, 2008. 208(1-3): p. 63-69.

    33. Jena, R.K., C.Y. Yue, and Y.C. Lam, Micro fabrication of cyclic olefin copolymer (COC) based microfluidic devices. Microsystem Technologies, 2011. 18(2): p. 159-166.

    34. Dirckx, M.E. and D.E. Hardt, Analysis and characterization of demolding of hot embossed polymer microstructures. Journal of Micromechanics and Microengineering, 2011. 21(8): p. 085024.

    35. Tsao, C.-W. and D.L. DeVoe, Bonding of thermoplastic polymer microfluidics. Microfluidics and Nanofluidics, 2008. 6(1): p. 1-16.

    36. Mair, D.A., et al., Injection molded microfluidic chips featuring integrated interconnects. Lab Chip, 2006. 6(10): p. 1346-54.

    37. Tsao, C.-W., J. Liu, and D.L. DeVoe, Droplet formation from hydrodynamically coupled capillaries for parallel microfluidic contact spotting. Journal of Micromechanics and Microengineering, 2008. 18(2): p. 025013.

    38. Saad Aly, M.A., et al., Antibacterial porous polymeric monolith columns with amphiphilic and polycationic character on cross-linked PMMA substrates for cell lysis applications. RSC Advances, 2013. 3(46): p. 24177.

    39. Jokinen, V., P. Suvanto, and S. Franssila, Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics, 2012. 6(1): p. 16501-1650110.

    40. Tsougeni, K., et al., Mechanisms of oxygen plasma nanotexturing of organic polymer surfaces: from stable super hydrophilic to super hydrophobic surfaces. Langmuir, 2009. 25(19): p. 11748-59.

    41. Roy, S., C.Y. Yue, and Y.C. Lam, Influence of plasma surface treatment on thermal bonding and flow behavior in Cyclic Olefin Copolymer (COC) based microfluidic devices. Vacuum, 2011. 85(12): p. 1102-1104.

    42. Lee, N.Y. and Y.S. Kim, A simple imprint method for multi-tiered polymer nanopatterning on large flexible substrates employing a flexible mold and hemispherical PDMS elastomer. Macromolecular Rapid Communications, 2007. 28(20): p. 1995-2000.

    QR CODE
    :::