| 研究生: |
王麒堯 Chi-Yao Wang |
|---|---|
| 論文名稱: |
可見光影像與熱影像之人臉辨識 Face Recognition Based on Visible Images and Thermal Images |
| 指導教授: |
范國清
Kuo-Chin Fan 林志隆 Chih-Lung Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 74 |
| 中文關鍵詞: | 人臉辨識 、生物特徵辨識 、熱紅外線 |
| 外文關鍵詞: | face recognition, biometrics, thermal infrared |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在現今的社會身分辨識愈來愈受到重視,在安全上扮演了相當重要的角色。其中最受矚目的是利用生物特徵作為辨識,不論是利用指紋辨識使用者的商品或是機場的海關人員透過虹膜辨識入境者的身分,都說明生物特徵辨識系統既便利又有可靠性。過去有許多關於生物辨識的研究¬¬──指紋、聲紋、掌紋、人臉和虹膜,利用各種演算法從中找出穩定又因人而異的特徵作身分辨識。本篇論文著重於人臉的辨識應用,所使用的人臉影像有可見光影像和人體溫度的熱影像,我們將結合兩者的資訊來做辨識。
這兩種影像各有辨識應用上的優劣,而且捕捉的光波範圍不同,表示各有不同的資訊包含其中。可見光影像的部分使用人臉外貌的部分,透過經典的Fisherface方法取出特徵;熱影像的部分則是利用人體的生理現象,擷取皮膚溫度分布的特徵,透過溫度梯度和形態學找出一個類似血管分布的網路圖,我們使用局部正方形滑過網路圖,計算區域內的網路像素的數量作為特徵向量。最後結合這兩種特徵向量得到更長的特徵向量,再利用KNN分類器與資料庫的影像作比對、分類。實驗證明比起使用單一特徵用多個特徵作辨識效果更好。
Nowadays, human identification is more and more important in security. The most important identification method is the use of the biometric feature. Either the commodities which recognize the authorized user with fingerprint or customs officers use the iris recognition system to identify passengers, they elaborate the convenient and the reliable of biometric identification. In the past, a lot of researches on fingerprint, voiceprint, palmprint, human face and iris. They use kinds of algorithms to find out stable feature which differs from person to person for identification. In our approach, we devise a method combine visible images with thermal images for identification.
These two kinds of different images have pros and cons. They capture electromagnetic radiation in different ranges and show they include different information. Features extracted from visual images by classical method, Fisherface method. From thermal images, we get the temperature distribution, by physiology phenomenon, based on temperature gradient and morphology. We use the local square windows to count pixels of a net to make feature vectors indicating images, which is called counter filter. Finally, we use two feature vectors and turn them into longer vectors, and then classify them with KNN classifier. Experimental results demonstrate that the performance of the system with multi-model is better than one with a single model.
參考文獻
[1] Roger Clarke, “Human Identification in Information Systems: Management Challenges and Public Policy Issues”, Information Technology & People, Vol. 7 No. 4, pp. 6-37, 1994.
[2] HTC One M9+指紋辨識器
http://www.htc.com/tw/support/htc-one-m9-plus/howto/632384.html.
[3] Xin Chen, Patrick J. Flynn and Kevin W. Bowyer, “IR and Visible Light Face Recognition”, Computer Vision and Image Understanding, Vol. 99, Issue 3, pp. 332–358, September 2005.
[4] P. J. Phillips, P. Grother , R. Micheals, et al, “Face recognition vendor test 2002”, IEEE International Workshop on Analysis and Modeling of Faces and Gestures, October 2003.
[5] I.T. Jolliffe, Principal Component Analysis, Springer, 2nd edition, New York, 2002.
[6] Rainer Lienhart, Alexander Kuranov and Vadim Pisarevsky, “Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection”, Pattern Recognition, Vol. 2781, pp. 297-304, 2003.
[7] Paul Viola and Michael J. Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features”, IEEE CVPR 2001, vol.1, pp. 511-518, 2001.
[8] Y. Freund and R. E. Schapire, “Experiments with a new boosting algorithm”, IN PROCEEDINGS OF THE THIRTEENTH INTERNATIONAL CONFERENCE ON MACHINE LEARNING, pp. 148-156, Morgan Kauman, Morgan Kaufmann, 1996.
[9] Pradeep Buddharaju, Ioannis T. Pavlidis and Panagiotis Tsiamyrtzis, “Physiology-Based Face Recognition”, IEEE Conference on Advanced Video and Signal Based Surveillance, pp. 354 - 359, 2005.
[10] Pradeep Buddharaju, Ioannis T. Pavlidis, Panagiotis Tsiamyrtzis and Mike Bazakos, “Physiology-Based Face Recognition in the Thermal Infrared Spectrum”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 29, No. 4, 2007.
[11] Rafael C. Gonzalez, Richard E. Woods著,數位影像處理,吳成柯、程湘君、戴善榮、雲立實譯,儒林圖書有限公司,台北,1993年2月。
[12] Pietro Perona and Jitendra Malik, “Scale-Space and Edge Detection Using Anisotropic Diffusion”, IEEE Transactions on PAMI, Vol. 12, No. 7, 1990.
[13] M. A. Turk and A. P. Pentland, “face recognition using eigenfaces”, IEEE CVPR 1991, pp. 586-591, 1991.
[14] P. N. Belhumeur, J. P. Hespanha and D. J. Kriegman, “Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 19, No. 7, pp. 711-720. 1997
[15] Louisa Lam, Seong-Whan Lee and Ching Y. Suen, “Thinning methodologies-a comprehensive survey”, IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 14, No. 9, pp. 869-885, 1992.
[16] Julius T. Tou and Rafael C. Gonzalez, “Pattern Recognition Principles”, Addison-Wesley, 2nd edition, 1977.
[17] K. S. Fu, R. C. Gonzalez and C. S. G. Lee, Robotics: Control, Sensing, Vision, and Intelligence, pp. 426-427. McGraw-Hill, New York, 1987.
[18] S. Klein, M. Staring, K. Murphy, M.A. Viergever, J.P.W. Pluim, "elastix: a toolbox for intensity based medical image registration," IEEE Transactions on Medical Imaging, vol. 29, no. 1, pp. 196 - 205, January 2010.
[19] D.P. Shamonin, E.E. Bron, B.P.F. Lelieveldt, M. Smits, S. Klein and M. Staring, "Fast Parallel Image Registration on CPU and GPU for Diagnostic Classification of Alzheimer’s Disease", Frontiers in Neuroinformatics, vol. 7, no. 50, pp. 1-15, January 2014.
[20] Carlos A. R. Behaine and Jacob Scharcanski, “Enhancing the Performance of Active Shape Models in Face Recognition Applications”, IEEE Transactions on Instrumentation and Measurement, pp. 2330-2333, August 2012.
[21] Anuj Srivastava and Xiuwen Liu, “Statistical hypothesis pruning for identifying faces from infrared images”, Image and Vision Computing, Vol. 21, No.7 ,pp. 651-661.
[22] http://www.avio.co.jp/products/infrared/lineup/ir-thermo/g120-g100/spec.html
[23] Virginia Estellers, Dominique Zosso , Rongjie Lai , et al. “Efficient Algorithm for Level Set Method Preserving Distance Function”, IEEE Transactions on Image Processing, Vol. 21, No. 12, 2012.
[24] Ana M. Guzman, et al. “Thermal Imaging as a Biometrics Approach to Facial Signature Authentication”, Biomedical and Health Informatics, Vol. 17, No, 1, 2013.
[25] Nnamdi Osia and Thirimachos Bourlai, “Holistic and Partial Face Recognition in the MWIR Band using Manual and Automatic Detection of Face-based Features”, Homeland Security (HST), 2012 IEEE Conference on Technologies for, pp. 273 – 279, 2012.
[26] Siu-Yeung Ch, Lingyu Wang and Wen Jin Ong, “Thermal Imprint Feature Analysis for Face Recognition”, 2009 IEEE International Symposium on Industrial Electronics, pp. 1875 – 1880, 2009.
[27] David Zhang, Feng Liu and Qijun Zhao, “Selecting a Reference High Resolution for Fingerprint Recognition Using Minutiae and Pores”, IEEE Transactions on Instrumentation and Measurement, Vol. 60, pp. 863-871, March 2011.
[28] Marie-Pierre Dubuisson and Anil K. Jain, “A modified Hausdorff distance for object matching”, Pattern Recognition, Vol. 1, pp. 454-458, October 1994.
[29] Otsu, N., “A Threshold Selection Method from Gray-Level Histograms”, IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62-66, 1979.
[30] Andrew W. Fitzgibbon , Maurizio Pilu and Robert B. Fisher, “Direct Least Squares Fitting of Ellipses”, Pattern Recognition, 1996., Proceedings of the 13th International Conference on, Vol. 1, pp. 253-257, 1996.
[31] C. L. Lin and K. C. Fan, “Biometric verification using thermal images of palm-dorsa vein patterns”, presented at IEEE Trans. Circuit Syst. Video Techn. pp. 199-213, 2004.
[32] Jingu Heo, Seong G. Kong, Besma R. Abidi, and Mongi A. Abidi, "Fusion of Visual and Thermal Signatures with Eyeglass Removal for Robust Face Recognition", CVPR Workshop 2004. IEEE Conference on, pp. 122, 2004.
[33] Satyanadh Gundimada and Vijayan K. Asari, “Facial Recognition Using Multisensor Images Based on Localized Kernel Eigen Space”, IEEE Trans. on Image Processing, Vol. 18 No. 6, June 2009.
[34] J.D.E.Beynon and D.R.Lamb, Charge-coupled devices and their applications, McGraw-Hill Book Company, London, 1977