跳到主要內容

簡易檢索 / 詳目顯示

研究生: 吳章諾
Chang-no Wu
論文名稱: 井測波速異向性影響因子之理論探討
指導教授: 董家鈞
Jia-jyun Dong
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 86
中文關鍵詞: 剪力波異向性TCDP擬連續體
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於彈性波波速受控於介質之彈性勁度,當彈性波傳遞於不同勁度之介質時,其壓力波及剪力波之波速將有所改變。依此特性,彈性波波速之異向性一般被解釋為地層異向性之指標。然而,剪力波於岩層內傳遞時,同時受到完整岩石之異向性、岩體之不連續面位態分布與現地應力影響,而分裂成兩質點運動方向互相垂直且速度不同之快、慢剪力波,故利用波速異向性及快剪力波(Fast shear horizontal,FSH)之質點運動方向判釋最大水平應力方向時,需同時考量其他因素對波速異向性之影響程度。本研究考慮完整岩石力學特性之異向性,並利用Oda之擬連續體模式,藉由台灣車籠埔斷層深井鑽探計畫(Taiwan Chelungpu-Fault Drilling Project, TCDP)之節理資料所建立節理張量,估算岩體之彈性勁度張量。據此,透過波傳理論即可計算出剪力波於節理岩體內傳遞之速度異向性。本研究首先以現地所得之資料,定性地觀察並歸納各因子與剪力波異向性可能之相互關係,結果發現岩性及深度為影響剪力波異向性之重要因子。再根據擬連續體模式與TCDP井測資料相比,結果發現岩性依然對於剪力波波速異向性影響程度高:砂岩段剪力波波速、異向性比皆較粉岩段高,是因為TCDP場址車籠埔斷層上盤之砂岩本身含有方向一致之微裂隙造成其先天異向性較高所致。再根據參數敏感度之結果,節理長度也很大程度地控制了波速異向性之大小。因此,若欲利用FSH推估最大水平應力方向時,須謹慎考慮岩體材料先天異向性。


    The direction of the fast horizontal shear wave velocity is frequently used as an indication of the direction of the maximum horizontal principal stress. However, together with the stress induced anisotropy, the wave velocity anisotropy will also be dominated by the inherent anisotropy including the effects of sedimentary and tectonic structures. This study carefully evaluates the influence factors of wave velocity anisotropy in Taiwan Chelungpu-Fault Drilling Project (TCDP) borehole. The anisotropic stiffness tensors of sandstones and mudrocks were derived from the laboratory wave measurement. The equivalently continue model was used to evaluate the stiffness tensor of jointed rocks, which considered the anisotropic distribution of discontinuities. The lithology was identified as the most influential factor on the wave velocity anisotropy. The dip angle of the bedding plan is also a dominating factor. Surprisingly, the joint orientation is not a significant factor influencing the wave velocity anisotropy. Accordingly, determining the direction of the maximum horizontal principal stress from the direction of the fast horizontal shear wave velocity should consider the influence of inherent anisotropy of rock mass base on the TCDP borehole data.

    摘要…………………………………………………………………….....i Abstract………………………………..…………………………...……iii 致謝……………………………………...………………………………iv 目錄……………………………………………………………….……...v 圖目錄………………………………………………………………….viii 表目錄………………………………………………………………......xii 符號說明……………………………………………….……………....xiii 第一章 緒論……………………………………………………………..1 1.1 研究背景與目的...…………………………………………..1 1.2 研究方法...…………………………………………………..6 1.2.1 異向性材料波傳理論……………………….……….7 1.2.2 傾斜沉積岩層(不含破裂面)之彈性柔度張量....….10 1.2.3 節理岩體之彈性柔度張量…………………………10 第二章 使用資料………………………………………………………15 2.1 速度井測...…………….. ………………………………….15 2.2 自然伽瑪放射線井測與井壁影像...………………………16 2.3 岩心判釋與岩心影像……...………………………………18 2.4 岩心波速實驗…...…………………………………………18 2.4.1 粉岩之波速量測結果…………………….………...19 2.4.2 砂岩之波速量測結果…….………………………...20 2.5 最大水平應力方向評估…………………………...………24 第三章 研究結果………………………………………………………27 3.1 TCDP井測資料分析………………….………………….27 3.1.1 岩性對剪力波異向性之影響……………….……...28 3.1.2 深度500至600公尺……………….……………….31 3.1.3 深度600至1100公尺……………..………………..32 3.1.4 深度1100至1300公尺……………..………………33 3.1.5 深度1300至1710公尺…………….……………….34 3.1.6 深度1710至1860公尺………………...…………...35 3.2 節理岩體之柔度張量…………………………...…………35 3.2.1 傾斜沉積岩層(未考慮節理)之柔度張量.………....36 3.2.2 節理岩體之柔度張量…..…………………………..38 3.3 剪力波速之異向性………………………………...………41 3.3.1 傾斜沉積岩層(未考慮節理)之剪力波異向性….…41 3.3.2 傾斜沉積岩(考慮節理)……….……………………47 第四章 討論……………………………………………………………56 4.1 傾斜沉積岩層波速異向性……………………...…………56 4.1.1 地層傾角之影響……………………..……………..56 4.1.2 深度之影響………………..………………………..57 4.2 節理岩體引致之剪力波異向性……………...……………58 4.2.1 參數合理範圍..……………………………………..58 4.2.2 正向勁度與剪向勁度對波速異向性之影響…...….60 4.2.3 節理長度對波速異向性之影響……………………63 4.2.4深度對波速異向性之影響………………….………67 4.3 利用剪力波異向性推估應力方向之潛在問題……...……68 4.4 由快剪波及井孔崩落判釋之最大水平應力方向之差異...69 第五章 結論……………………………………………………………72 參考文獻………………………………………………………………..74 附錄A………………………………………………………….………..78 附錄B……………………………………………………….…………..80 附錄C……………………………………………………….…………..83 附錄D……………………………………………………….…………..85

    [1] Boness, N. L., and Zoback, M. D., “Stress-induced seismic velocity anisotropy and physical properties in the SAFOD Pilot Hole in Parkfield, CA”, Geophysical Research Letters, Vol 31, doi: 10.1029/2003GL019020, 2004.
    [2] Mueller, M. C., “Prediction of lateral variability in fracture intensity using multicomponent shear-wave seismic as a precursor to horizontal drilling”, Geophysical Journal International, Vol 107, pp. 409–415, 1991.
    [3] Alford, R. M., “Shear data in the presence of azimuthal anisotropy,” Annual International Meeting of the Society of Exploration Geophysicists Expanded Abstracts, Vol 56, pp.476–479, 1986.
    [4] Sayers, C. M., “The elastic anisotropy of shales”, Journal of Geophysical Research, Vol 99, pp. 767–774, 1994.
    [5] Boness, N. L., and Zoback, M. D., “Mapping stress and structurally controlled crustal shear velocity anisotropy in California”, Geological Society of America, Vol 34(10), pp. 825-828, 2006a.
    [6] Boness, N. L., and Zoback, M. D., “A multiscale study of the mechanisms controlling shear velocity anisotropy in the San Andreas Fault Observatory at Depth”, Geophysics, Vol 71(5), doi:10.1190/1.2231107, 2006b.
    [7] 吳泓昱,「車籠埔斷層於台灣大坑井區域之物理參數特性及應力場異質性之模擬」,國立中央大學,博士論文,民國99年。
    [8] Hung, J. H., Ma, K. F., Wang, C. Y., Ito, H., Lin, W. and Yeh, E. C., “Subsurface structure, physical properties, fault-zone characteristics and stress state in scientific drill holes of Taiwan Chelungpu Fault Drilling Project”, Tectonophysics, Vol 466, pp. 307–32, 2009.
    [9] Louis, L., Chen, N. T. M., David, C., Robion, P., Wong, T. F. and Song, S. R., “Anisotropy of magnetic susceptibility and P-wave velocity in core samples from the Taiwan Chelungpu-Fault Drilling Project (TCDP)”, Journal of Structural Geology, Vol 30, pp. 948–962, 2008.
    [10] Louis, L., David, C., Špaček, P., Wong, T. F. Fortin, J. and Song, S. R., “Elastic anisotropy of core samples from the Taiwan Chelungpu Fault Drilling Project (TCDP): direct 3-D measurements and weak anisotropy approximations”, Geophysical Journal International, Vol 188, pp. 239-252, 2012.
    [11] Musgrave, M. J. P., Crystal acoustics, Holden-Day, San Francisco, 1971.
    [12] Oda, M. “An Experimental Study of the Elasticity of Mylonite Rock with Random Cracks”, International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol 25(2), pp. 59-69, 1988.
    [13] Kanatani, K., “Distribution of directional data and fabric tensors”, International Journal of Engineering Science, Vol 22(2), pp. 149-164, 1984.
    [14] Oda, M., Modern developments in rock structure characterization, in Compressive Rock Engineering.Vol.1.edited by J. A. Hudson., Elsevier, New York., 1993.
    [15] Wu, Y. H., Yeh, E. C., Dong, J. J., Kuo, L. W., Hsu, J. Y. and Hung, J. H., “Core-log integration studies in hole-A of Taiwan Chelungpu-fault Drilling Project”, Geophysical Journal International, Vol 174, pp.949-965, 2008
    [16] Asquith, G. and Krygowski, D., Basic well log analysis, second edition, The American Association of Petroleum Geologists, 2004.
    [17] Lin, W., Yeh, E. C., Ito, H., Hung, J. H., Hirono, T., Soh, W., Ma, K. F., Kinoshita, M., Wang, C. Y., and Song, S.-R., “Current stress state and principal stress rotations in the vicinity of the Chelungpu fault induced by the 1999 Chi-Chi, Taiwan, earthquake”, Geophysical Research Letters, Vol 34, doi:10.1029/2007GL030515, 2007.
    [18] Yeh, E. C., Sone, H., Nakaya, T., Ian, K. H., Song, S. R., Hung, J. H., Lin, W., Hirono, T., Wang, C. Y., Ma, K. F., Soh, W. and Kinoshita, M., “Core description and characteristics of fault zones from Hole-A of the Taiwan Chelungpu-Fault drilling project”, Terrestrial, Atmospheric and Oceanic Sciences, Vol 18(2), pp. 327–357, 2007.
    [19] 嚴珮綺,「利用鑽井資料推估台灣新竹至台中地區的地下現地應力狀態」,國立中央大學,碩士論文,民國101年。
    [20] Johnston, J. E. and Christensen N. I., “Seismic anisotropy of shales”, Journal of Geophysical Research, Vol 100(4), pp.5991-6003, 1995.
    [21] Lin, W., Yeh, E. C., Ito, H., Hirono, T., Soh, W., Wang, C. Y., Ma, K. F., Hung, J. H., and Song, S.-R., “Preliminary results of stress measurement using drill cores of TCDP Hole-A: an application of anelastic strain recovery method to three dimensional in-situ stress determination”, Terrestrial, Atmospheric and Oceanic Sciences, Vol 18(2), pp. 379–393, 2007b.
    [22] Yabe, Y., Song, S. R. and Wang, C. Y., ”In-situ stress at the northern portion of the Chelungpu fault, Taiwan, estimated on boring cores recovered from a 2-km-deep hole of TCDP”, Earth Planets Space, Vol 60, pp.809–819., 2008.
    [23] Castagna, P., Batzle, M. L., and Eastwood, R. L., “Relationships between compressional-wave and shear-wave velocities in elastic silicate rocks”, Geophysics, Vol 50(4), pp. 571-581, 1985.
    [24] 鄭允嘉,「節理岩體滲透係數之先天異向性與應力引致異向性」,國立中央大學,碩士論文,民國95年。
    [25] Oda, M., ” An Equivalent Continuum Model for Coupled Stress and Fluid Flow Analysis in Jointed Rock Masses”, Water Resources Research, Vol 22(13), pp. 1845-1856, 1986.
    [26] Lee, C. H. and Farmer, I. W., Fluid Flow in Discontinuous Rocks, First Edition. Chapman and Hall, 1993.
    [27] International Society For Rock Mechanics, “International society for rock mechanics commission on standardization of laboratory and field test: suggested methods for the quantitative description of discontinuities in rock mass,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol 15, pp. 319-368, 1977.
    [28] Schlumberger, DSI Dipole Shear Sonic Imager, Schlumberger Marketing Communications, Houston., 2004
    [29] 陳正旺,「車籠埔斷層周圍岩石力學特性之初探」,國立台灣大學土木工程學研究所,碩士論文,民國94年。
    [30] Cheng, H.C, and Toksoz, M.N., “A three-dimensional model to simulate joint networks in layered rocks,” Canadian Journal of Earth Sciences, Vol 39, pp.1443-1455, 1979.
    [31] Zou, Y., Taylor, W. E. G., and Heath, D. J., “A numerical model for borehole breakouts,” International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, Vol 33, pp. 103-109, 1996.

    QR CODE
    :::