| 研究生: |
陳致均 Chih-Chun Chen |
|---|---|
| 論文名稱: |
自我對準電極鍺量子點單電子/電洞電晶體之製作與特性分析 The Fabrication and Electrical Characterization of Germanium QD Single Electron/Hole Transistor with Self-aligned Electrode |
| 指導教授: |
李佩雯
Pei-Wen Li |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 量子點 、單電子電晶體 |
| 外文關鍵詞: | SET, single electron transistor |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近三十年來,半導體業不斷地追求更高的元件密度與更快的操作速度,為了
達到這兩個目的,金氧半場效電晶體( Metal Oxide Semiconductor Field Effect
Transistor,MOSFET )的通道長度不斷地向下微縮。在西元2008 年,Intel 已經
成功的發展出通道長度僅有35 nm 的MOSFET。儘管Intel 成功地不斷將通道向
下微縮,但微縮的過程是愈來愈艱辛。物理學家更大膽的預期MOSFET 通道微
縮的終點將止於約10 nm,因為這個尺度下的通道長度只有幾個原子直徑,造成
場效電晶體的微縮面臨瓶頸。為了繼續將元件尺寸向下微縮,達到更小面積、更
高操作速度的半導體元件,近年來量子元件的研究如雨後春筍般的出現。
在此篇論文中,著重於改善本實驗室上一代自我對準電極SET/SHT 在奈米
線( nanowire )蝕刻時良率不高、穿隧接面厚度過厚與源極與汲極摻雜濃度不足等
缺點。本論文成功的克服奈米尺度下蝕刻SOI wafer ( silicon on insulator ) 側蝕嚴
重的問題,大幅改善蝕刻時的良率,並在電性量測上觀察到由不對稱穿隧接面所
造成的兩個截然不同的ID-VG 譜線( spectrum ),且更深入探討量子點內的量子效
應。
In the recent thirty years, the semiconductor industries pursue higher density of
devices and operation speed without end. In order to achieve these goals mentioned
above, the reductions of channel lengths of MOSFET are shorten incessantly. In 2008,
Intel has announced they developed the 35 nm gate length of MOSFET successfully.
Although they succeeded in decreasing the critical dimension, the develop procedure
has been much more difficult than before. The end of the channel length shortening is
expected to be 10 nm by physicists. Because the dimension of channel length is only
several times of an atomic diameter, the reason causes the bottleneck appearing in the
road of critical dimension shortening. In order to short the device dimension, speed up
operation speed, and decrease device area, the research of quantum devices are
published very often.
This thesis focuses on rising the low yield in nanowire etching, decreasing the
tunneling barrier thickness and solving the source/drain lack of dopant issue. Thisthesis has conquered the tremendous lateral etching issue under etching SOI wafer in
nanoscale. The characterizations of asymmetric tunneling barrier are observed
obviously under room-temperature.
[1] 陳啟東,「單電子電晶體簡介」,物理雙月刊,第二十六卷,第三期,483-490頁,2004年6月。
[2] M. Saitoh, H. Harata and T. Hiramoto, “Room-temperature demonstration of integrated silicon single-electron transistor circuit for current switching and analog pattern matching,” in IEDM Tech Dig. 2004, p. 187.
[3] L. Zhuang, L. Guo and S. Y. Chou, “Silicon single-electron quantum-dot transistor switch operating at room-temperature,” Appl. Phys. Lett., vol. 72,
p. 1205, 1998.
[4] H. Ishikuro and T. Hiramoto, “Quantum mechanical effects in the silicon quantum dot in a single-electron transistor,” Appl. Phys. Lett., vol. 71, p. 3691, 1997.
[5] B. H. Choi et al., “Fabrication and room-temperature characterization of a silicon self-assembled quantum-dot transistor,” Appl. Phys. Lett., vol. 73, p. 3129, 1998.
[6] Y. Ono et al., “Fabrication method for IC-oriented Si twin-islanld single-electron transistors,” in IEDM Tech Dig. 1998, p. 147.
[7] P. W. Li et al., ”Fabrication of a germanium quantum-dot single-electron transistor with large coulomb-blockade oscillations at room-temperature,” Appl. Phys. Lett., vol. 85, p. 1532, 2004.
[8] G. L. Chen et al., “Tunneling spectroscopy of a germanium quantum dot in single-hole transistors with self-aligned electrodes,” Nanotechnol., vol. 18,
p. 475402, 2007.
[9] Y. Takahashi et al., “Silicon single-electron devices and their applications,” in IEEE Int. Symp. ISMVL, 2000, p. 411.
[10] J. Weis et al., “Transport spectroscopy of a confined electron system under a gate tip”, Phys. Rev. B, vol. 46, p. 12837, 1992.
[11] R. Westerman, D. Johnson and S. L. Lai, “ Notch-free etching of high aspect SOI structures using alternating deposition and etching and pulsed plasma,“ U.S. Patent 6905626, 2005.
[12] Enhanced SOI capability, Surface technology system, [online]. Available:http://www.stsystems.com
[13] D. Hisamoto et al., “FinFET – a Self-aligned double-gate MOSFET scalable to 20 nm”, IEEE Trans. Electron Device, vol. 47, p. 2320, 2000.
[14] H. K. Liou et al., “Effect of Ge concentration on SiGe oxidation behavior”, Appl. Phys. Lett., vol. 59, p. 1200, 1991.
[15] P. W. Li, W. M. Liao and S. W. Lin, ”Formation of atomic-scale germanium quantum dots by selective oxidation of SiGe/Si-on-insulator,” Appl. Phys. Lett., vol. 83, p. 4628, 2003.
[16] W. T. Lai and P. W. Li, “Growth kinetics and related physical/electrical properties of Ge quantum dot formed by thermal oxidation of Si1-xGex-on-insulator, ” Nanotechnol., vol. 18, p. 145402, 2007.
[17] P. W. Li et al., “Study of tunneling currents through germanium quantum-dot single-hole and -electron transistors,” Appl. Phys. Lett., vol. 88, p. 213117, 2006.
[18] M. Saitoh and T. Hiramoto, ”Room-temperature observation of negative differential conductance due to large quantum level spacing in silicon single-electron transistor,” Jpn. J. Appl. Phys., vol. 43, p. L210, 2004.
[19] K.C. Lu et al., “Point contact reactions between Ni and Si nanowires and reactive epitaxial growth of axial nano-NiSi/Si,” Appl. Phys. Lett., vol. 90,
p. 253111, 2007.
[20] W. T. Lai, David M. T. Kuo and P. W. Li, “Transient current through a single germanium quantum dot at room temperature,” Appl. Phys. Lett., to be published.