| 研究生: |
柳子寧 Tzu-Ning Liu |
|---|---|
| 論文名稱: |
以線上評論探討智慧型手機重要屬性之研究 - BERT與Kano Model之應用 Exploring key attributes of smartphones through online reviews - an application of BERT and KANO model |
| 指導教授: |
陳炫碩
Shiuann-Shuoh Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 企業管理學系 Department of Business Administration |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 英文 |
| 論文頁數: | 58 |
| 中文關鍵詞: | 情感分析 、文字探勘 、語言模型 、商品屬性 |
| 外文關鍵詞: | BERT, Aspect-based Sentiment Analysis, Text Mining, Kano Model |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
電子商務的發展使得網路評論成為消費者和企業之間的重要溝通管道。本研究的目的在於利用網路評論資料來獲取消費者需求資訊,並用以改善產品開發策略。透過應用Kano模型和屬性情感分析(Aspect-Based Sentiment Analysis),本研究利用三個案例研究來分析智慧型手機評論,進而探討不同品牌陣營、世代與價格帶之間,消費者對智慧型手機的看法。
本研究利用自然語言處理技術,包括屬性提取和情感分析來檢視評論。提取出的屬性被嵌入,並採用K-means分群方法將其分組。這些屬性分組連同其情感和整體評級一起作為神經網絡模型的輸入,以確定情感對整體評分的影響。基於這些影響,將產品的屬性歸類到Kano Model中。
研究結果顯示,消費者在寫評論的時候,會受到其比較基礎影響。例如,在觸屏時代的低價格帶中,客戶認為"藍牙"和"功能"是必要屬性,而這些屬性在中、高價格帶時卻轉變成performance屬性。這個結果顯示,在手機產品的初期階段,客戶非常重視藍牙和類似筆這樣的配件,因為過去的掌上型筆電(PDA)等類似產品也具備筆和藍牙功能。透過整合Kano模型和屬性情感分析,本研究為消費者需求分析領域做出了貢獻,使企業能夠根據網路評論中提取的消費者回饋做出更精確的產品決策。
In the era of e-commerce, online product reviews have become an essential source of information for consumers and businesses alike. This study aims to leverage the abundance of online reviews to gain valuable insights into customer preferences and improve product development strategies. We apply the BERT and Kano Model to analyze online product reviews, conducting three case studies that can assist E-commerce retailers with marketing precision based on a better understanding of customer thought.
Various approaches were applied to cell phone review data from 10 brands spanning November 2003 to December 2019. Important attributes were extracted and sentiment was classified using the BERT model. K-means clustering grouped these attributes based on reviewers' perspectives. The SHAP value and effect-based Kano Model were used for additional analysis.
Regardless of generation, iPhone customers prioritize battery capacity and charging speed. A notable transition in the perception of the "battery" attribute was observed in the high price zone, attributed to increased availability and diversity of phone applications. Product comparisons, rather than the product itself, significantly influence customers' reviews. The importance of "price" has diminished over three generations, indicating a shift in preference towards more affordable options. iPhone buyers prioritize user experience, while Android phone buyers focus on functional aspects.
We do not consider different customer segments, such as age or gender, which may impact customer satisfaction dimensions. Future research should analyze online reviews specific to target customer segments for valuable insights and tailored product strategies.
Our study analyzes online product reviews across various brands, generations, and price zones. Utilizing the BERT model and integrating SHAP value into the Kano model, we provide comprehensive insights that surpass traditional approaches, enabling a clear understanding of customer preferences.
Al-Smadi, M., Talafha, B., Al-Ayyoub, M., & Jararweh, Y. (2019). Using long short-term memory deep neural networks for aspect-based sentiment analysis of Arabic reviews [Review]. International Journal of Machine Learning and Cybernetics, 10(8), 2163-2175. https://doi.org/10.1007/s13042-018-0799-4
Bi, J. W., Liu, Y., Fan, Z. P., & Cambria, E. (2019). Modelling customer satisfaction from online reviews using ensemble neural network and effect-based Kano model. International Journal of Production Research, 57(22), 7068-7088. https://doi.org/10.1080/00207543.2019.1574989
Chen, C.-D., & Ku, E. C. S. (2021). Diversified Online Review Websites as Accelerators for Online Impulsive Buying: The Moderating Effect of Price Dispersion. Journal of Internet Commerce, 20(1), 113-135. https://doi.org/10.1080/15332861.2020.1868227
D'Aniello, G., Gaeta, M., & La Rocca, I. (2022). KnowMIS-ABSA: an overview and a reference model for applications of sentiment analysis and aspect-based sentiment analysis. ARTIFICIAL INTELLIGENCE REVIEW, 55(7), 5543-5574. https://doi.org/10.1007/s10462-021-10134-9
Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2019). BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding. ArXiv, abs/1810.04805.
El-Adly, M. I. (2019). Modelling the relationship between hotel perceived value, customer satisfaction, and customer loyalty [Article]. Journal of Retailing and Consumer Services, 50, 322-332. https://doi.org/10.1016/j.jretconser.2018.07.007
Farhadloo, M., Patterson, R. A., & Rolland, E. (2016). Modeling customer satisfaction from unstructured data using a Bayesian approach [Article]. Decision Support Systems, 90, 1-11. https://doi.org/10.1016/j.dss.2016.06.010
Floh, A., Koller, M., & Zauner, A. (2013). Taking a deeper look at online reviews: The asymmetric effect of valence intensity on shopping behaviour. Journal of Marketing Management, 29(5-6), 646-670. https://doi.org/10.1080/0267257X.2013.776620
Georg Lackermair , D. K., Kenan Kanmaz. (2013). Importance of Online Product Reviews from a Consumer's Perspective. Advances in Economics and Business, 1(1), 1-5. https://doi.org/10.13189/aeb.2013.010101
He, L., Song, W., Wu, Z., Xu, Z., Zheng, M., & Ming, X. (2017). Quantification and integration of an improved Kano model into QFD based on multi-population adaptive genetic algorithm. COMPUTERS & INDUSTRIAL ENGINEERING, 114, 183-194. https://doi.org/https://doi.org/10.1016/j.cie.2017.10.009
Jin, J., Jia, D. P., & Chen, K. J. (2022). Mining online reviews with a Kansei-integrated Kano model for innovative product design. International Journal of Production Research, 60(22), 6708-6727. https://doi.org/10.1080/00207543.2021.1949641
Joung, J., & Kim, H. M. (2022). Explainable neural network-based approach to Kano categorisation of product features from online reviews. International Journal of Production Research, 60(23), 7053-7073. https://doi.org/10.1080/00207543.2021.2000656
Južnik Rotar, L., & Kozar, M. (2017). The Use of the Kano Model to Enhance Customer Satisfaction. Organizacija, 50(4), 339-351. https://doi.org/doi:10.1515/orga-2017-0025
Kang, T.-C., Hung, S.-Y., & Huang, A. H. (2020). The Adoption of Online Product Information: Cognitive and Affective Evaluations. Journal of Internet Commerce, 19(4), 373-403. https://doi.org/10.1080/15332861.2020.1816315
Kano, N., Seraku, N., Takahashi, F., & Tsuji, S.-i. (1984). Attractive Quality and Must-Be Quality. Journal of The Japanese Society for Quality Control, 14(2), 147-156. https://doi.org/10.20684/quality.14.2_147
Li, N. L., Jin, X., & Li, Y. P. (2020). Identification of key customer requirements based on online reviews [Review]. Journal of Intelligent & Fuzzy Systems, 39(3), 3957-3970. https://doi.org/10.3233/jifs-200057
Lin, S.-P., Yang, C.-L., Chan, Y.-h., & Sheu, C. (2010). Refining Kano's ‘quality attributes–satisfaction’ model: A moderated regression approach. International Journal of Production Economics, 126(2), 255-263. https://doi.org/https://doi.org/10.1016/j.ijpe.2010.03.015
Liu, P. D., Zhang, K., Dong, X., & Wang, P. (2022). A Big Data-Kano and SNA-CRP Based QFD Model: Application to Product Design Under Chinese New E-commerce Model. IEEE TRANSACTIONS ON ENGINEERING MANAGEMENT. https://doi.org/10.1109/TEM.2022.3227094
Lopes, É., Correa, U., & Freitas, L. (2021). Exploring BERT for Aspect Extraction in Portuguese Language. The International FLAIRS Conference Proceedings, 34(0). https://doi.org/10.32473/flairs.v34i1.128357
Lundberg, S. M., & Lee, S.-I. (2017). A Unified Approach to Interpreting Model Predictions. ArXiv, abs/1705.07874.
Madzík, P., & Kormanec, P. (2020). Developing the integrated approach of Kano model and Failure Mode and Effect Analysis. Total Quality Management & Business Excellence, 31(15-16), 1788-1810. https://doi.org/10.1080/14783363.2018.1509699
Martí Bigorra, A., Isaksson, O., & Karlberg, M. (2019). Aspect-based Kano categorization. International Journal of Information Management, 46, 163-172. https://doi.org/https://doi.org/10.1016/j.ijinfomgt.2018.11.004
Matzler, K., Hinterhuber, H. H., Bailom, F., & Sauerwein, E. (1996). How to delight your customers. Journal of Product & Brand Management, 5(2), 6-18. https://doi.org/10.1108/10610429610119469
Ozyurt, B., & Akcayol, M. A. (2021). A new topic modeling based approach for aspect extraction in aspect based sentiment analysis: SS-LDA [Article]. Expert Systems with Applications, 168, 14, Article 114231. https://doi.org/10.1016/j.eswa.2020.114231
Park, H., & Jeon, H. (2022). The Dynamics of Customer Satisfaction Dimension based on BERT, SHAP, and Kano Model. IFAC-PapersOnLine, 55(10), 2384-2389. https://doi.org/https://doi.org/10.1016/j.ifacol.2022.10.065
Putra, R. A. S., & Priyanto. (2021). Kano Model Analysis of Android Apps Quality from End User’s Preferences. Journal of Physics: Conference Series, 1737(1), 012016. https://doi.org/10.1088/1742-6596/1737/1/012016
Qi, J., Zhang, Z., Jeon, S., & Zhou, Y. (2016). Mining customer requirements from online reviews: A product improvement perspective. Information & Management, 53(8), 951-963. https://doi.org/https://doi.org/10.1016/j.im.2016.06.002
Salini, S., & Kenett, R. S. (2009). Bayesian networks of customer satisfaction survey data [Article]. Journal of Applied Statistics, 36(11), 1177-1189, Article Pii 915736562. https://doi.org/10.1080/02664760802587982
Shi, Y. L., & Peng, Q. J. (2021). Enhanced customer requirement classification for product design using big data and improved Kano model. ADVANCED ENGINEERING INFORMATICS, 49, Article 101340. https://doi.org/10.1016/j.aei.2021.101340
Singh, A., Jenamani, M., Thakkar, J. J., & Rana, N. P. (2022). Quantifying the effect of eWOM embedded consumer perceptions on sales: An integrated aspect-level sentiment analysis and panel data modeling approach. JOURNAL OF BUSINESS RESEARCH, 138, 52-64. https://doi.org/10.1016/j.jbusres.2021.08.060
Ullah, A., & Tamaki, J. (2011). Analysis of Kano-Model-Based Customer Needs for Product Development. SYSTEMS ENGINEERING, 14(2), 154-172. https://doi.org/10.1002/sys.20168
Wang, S., Thompson, L., & Iyyer, M. (2021). Phrase-BERT: Improved Phrase Embeddings from BERT with an Application to Corpus Exploration. Empirical Methods in Natural Language Processing.
Wang, W. a., Pan, S. J. a., Dahlmeier, D. a., & Xiao, X. (2016). Recursive Neural Conditional Random Fields for Aspect-based Sentiment Analysis. Proceedings of the 2016 Conference on Empirical Methods in Natural Language Processing, 616-626. https://doi.org/10.18653/v1/D16-1059
Wu, X. (1991). Optimal quantization by matrix searching. Journal of Algorithms, 12(4), 663-673. https://doi.org/https://doi.org/10.1016/0196-6774(91)90039-2
Yang, H., & Li, K. (2023). PyABSA: A Modularized Framework for Reproducible Aspect-based Sentiment Analysis. arXiv pre-print server. https://doi.org/10.48550/arXiv.2208.01368
Yang, H., Zeng, B. Q., Yang, J. H., Song, Y. W., & Xu, R. Y. (2021). A multi-task learning model for Chinese-oriented aspect polarity classification and aspect term extraction [Article]. Neurocomputing, 419, 344-356. https://doi.org/10.1016/j.neucom.2020.08.001
Zhang, J., Lu, X. C., & Liu, D. A. (2021). Deriving customer preferences for hotels based on aspect-level sentiment analysis of online reviews [Article]. Electronic Commerce Research and Applications, 49, 14, Article 101094. https://doi.org/10.1016/j.elerap.2021.101094
Zhang, Y., Lu, H. M., Jiang, C., Li, X., & Tian, X. L. (2021). Aspect-Based Sentiment Analysis of User Reviews in 5G Networks [Article]. Ieee Network, 35(4), 228-233. https://doi.org/10.1109/mnet.011.2000400
Zhao, A. P., & Yu, Y. (2021). Knowledge-enabled BERT for aspect-based sentiment analysis. KNOWLEDGE-BASED SYSTEMS, 227, Article 107220. https://doi.org/10.1016/j.knosys.2021.107220
Zhou, F., Ayoub, J., Xu, Q., & Yang, X. J. (2019). A Machine Learning Approach to Customer Needs Analysis for Product Ecosystems. Journal of Mechanical Design, 142, 1. https://doi.org/10.1115/1.4044435
Zhu, F., & Zhang, X. Q. (2010). Impact of Online Consumer Reviews on Sales: The Moderating Role of Product and Consumer Characteristics. Journal of Marketing, 74(2), 133-148. https://doi.org/10.1509/jmkg.74.2.133