跳到主要內容

簡易檢索 / 詳目顯示

研究生: 賴臆升
Yi-Sheng Lai
論文名稱: 高分子/二氧化矽混成製備透明及疏水性質之硬質膜
Preparation of polymer/silica hybrid hard coatings with enhanced hydrophobicity and transparent ability
指導教授: 陳暉
Hui Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 102
中文關鍵詞: 有機/無機複合塗膜溶膠-凝膠
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究可經混合所合成之有機高分子溶液與無機溶膠,製備出透明且具疏水疏油之硬質膜。除了探討有機高分子溶液與無機溶膠之相容性,也探討高分子溶液與無機溶膠的組成對於有機無機膜之透明度、硬度、疏水、疏油性質的影響。有機高分子溶液是以甲基丙烯酸甲酯(MMA)為主要單體,搭配甲基丙烯酸(MAA)、3-(甲基丙烯酰氧)丙基三甲氧基矽烷(MPTMS)以及十三氟辛醇丙烯酸酯(PFHEA)行共聚合反應而得。無機溶膠以四乙氧基矽烷(TEOS)、甲基三甲氧基矽烷(MTMS)、MPTMS三種矽氧烷經溶膠凝膠程序而製得。
    當使用IPA/MEK共溶劑下,可以製備出透明有機高分子溶液與無機溶膠,兩者經混合後塗布亦可得到透明之有機無機膜。
    當有機高分子溶液為PMMA溶液時,使用MTMS/TEOS溶膠可提升有機無機膜之疏水性;若使用MPTMS/TEOS溶膠時,則可提升透光度以及硬度;而在使用MPTMS/MTMS溶膠時,可得透光度98%以上,硬度為6H,水之接觸角則為95度之有機無機膜。
    當有機高分子溶液為P(MAA/MMA)溶液時,可提升有機無機膜之硬度,但只有在使用MPTMS/TEOS溶膠之條件下,可製備出透光度為100.4%,硬度為8H以及水之接觸角為63.3度之有機無機膜。
    當有機高分子溶液為P(MPTMS/MMA)溶液時,可與MTMS/TEOS、MPTMS/TEOS溶膠製備透明之有機無機膜,特別是使用MTMS/TEOS溶膠時,可得透光度為99.5%,硬度為8H,水之接觸角達83.2度之有機無機膜。
    當有機高分子溶液為P(PFHEA/MPTMS/MMA)溶液時,可與MTMS/TEOS、MPTMS/TEOS溶膠製備透明之有機無機膜,特別是使用MTMS/TEOS溶膠時,可得透光度為100.4%、硬度為8H、水與二碘甲烷之接觸角是107度以及72.6度之有機無機膜。


    Thermo-curable nano-sized colloidal silica sol was synthesized and modified by coupling agents, methyl- trimethoxysilane (MTMS), and 3-(trimethoxysilyl)propyl methacrylate (MPTMS) in the presence of tetraethoxysilane (TEOS). These silica sols were prepared by keeping the molar ratio of silane monomers, solvent, water (H2O) (pH=1) constant at 1: 6: 4, respectively. On the other hand, PMMA modified solution was prepare by polymerization of methyl methacrylate (MMA) with methacrylic acid (MAA), MPTMS and perfluorohexylethyl acrylate (PFHEA). In order to improve the miscibility in silica sol and PMMA modified solution, isopropyl alcohol (IPA)/methyl ethyl ketone (MEK) (IPA:MEK=1:1) was chosen as the mixture solvent. The prepared polymer/silica films on PMMA substrates were characterized by UV-Vis spectroscopy, pencil hardness test, static water contact angle (WCA) and static diiodomethane contact angle (OCA) measurements. The effects of the composition of silane monomers, the ratio of silica sol to polymer modified solution, and the amount of MAA, MPTMS or PFHEA in polymer modified solution on the transparent, pencil hardness and hydrophobicity of prepared films were investigated. The results showed that with increasing the amount of MTMS and MPTMS in the sols, the hydrophobic and transparent properties were improved, respectively. On the other hands, with increasing MPTMS in the polymer solution, the transparent and hardness were improved. In addition, with increasing PFHEA in the polymer solution, the hydrophobic and oleophobic were improved.
    The best result showed that relative light transmittance, pencil hardness, WCA and OCA of polymer/silica hybrid film on PMMA substrate were reached to 100.4%, 8H, 107。and 72.6。, respectively.

    目錄 主目錄 I 圖目錄 III 實驗流程圖 III 實驗圖 III 表目錄 VI 第一章 緒論 1 第二章 實驗方法 7 2.1 藥品 7 2.2 實驗儀器 9 2.3 高硬度疏水透明有機無機膜材料製備 10 2.3.1 PMMA溶液製備 10 2.3.2 TEOS溶膠之製備 11 2.3.3 於壓克力基材上製備PMMA/TEOS溶膠之有機無機膜 12 第三章 結果與討論 14 3.1 PMMA/TEOS有機無機混成塗膜的探討 15 3.1.1 PMMA溶液之製備 15 3.1.2 TEOS溶膠之製備 15 3.1.3 PMMA/TEOS有機無機膜的製備 16 3.2 PMMA溶液下製備疏水性質之有機無機硬質膜 20 3.3 P(MAA/MMA)溶液與溶膠混合塗布之影響 31 3.4 P(MPTMS/MMA)溶液與溶膠混合塗布之影響 50 3.5 P(PFHEA/MPTMS/MMA)溶液與溶膠混合塗布之影響 69 第四章 結論 83 文獻回顧 86

    [1] H.-S. Chen, S.-H. Huang, T.-P. Perng, Surface and Coatings Technology. 2013, 233, 140.
    [2] C.-J. Dai, H.-Y. Tsao, Y.-J. Lin, D.-S. Liu, Thin Solid Films. 2014, 552, 159.
    [3] H. Ji, S. Wang, X. Yang, Polymer. 2009, 50, 133.
    [4] R. J. R. Uhlhorn, K. Keizer, A. J. Burggraaf, J. Membrane Sci., 1992, 66, 271.
    [5] K. Nakanishi, H. Minakuchi, N. Soga, J. Sol-Gel Sci. Technol., 1997, 8, 547.
    [6] G.S. Sur, J. E. Mark, Eur. Polym. J., 1985, 21, 1051
    [7] Y. Takahashi, A Maeda, K. Kojima, K. Uchida, Luminescence, 2000, 87, 767.
    [8] S. H. Jang, M. G. Han, S. S. Im, Synth. Met., 2000, 17, 110.
    [9] T. C. Chang, Y. T. Wang, Y. S. Hong, H. B. Chen, J. C. Yang, Polym. Degradation Stab., 2000, 69, 317
    [10] M. Yoshida, P.N. Prasad, Appl. Opt., 1996, 35, 1500.
    [11] A. Mehner, J. Dong, T. Prenzel, W. Datchary, D.A. Lucca, Journal of Sol-Gel Science and Technology. 2010, 54, 355.
    [12] A.C. Pierre, A. Rigacci, SiO2 Aerogels. 2011, 21.
    [13] P. Chaijareenont, H. Takahashi, N. Nishiyama, M. Arksornnukit, Dental Materials Journal. 2012, 31, 623.
    [14] C.-C. Chang, T.-Y. Oyang, Y.-C. Chen, F.-H. Hwang, L.-P. Cheng, Journal of Coatings Technology and Research. 2013, 11, 381.
    [15] H. Kozuka, K. Nakajima, H. Uchiyama, ACS applied materials & interfaces. 2013, 5, 8329.
    [16] L. Sowntharya, S. Lavanya, G.R. Chandra, N.Y. Hebalkar, R. Subasri, Ceramics International. 2012, 38, 4221.
    [17] T.J. Wood, L.J. Ward, J.P. Badyal, ACS applied materials & interfaces. 2013, 5, 9678.
    [18] L.Y.L. Wu, L. Boon, Z. Chen, X.T. Zeng, Thin Solid Films. 2009, 517, 4850.
    [19] 馬振基, “奈米材料科技原理及應用”, 全華科技圖書, 2003.
    [20] C. J. Brinker, G. W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing, Academic Press, Boston, 1990.
    [21] S. J. Clarson, J. E. Mark, Polym. Commun., 1987, 28, 249
    [22] H. J. L. Samuelson, L. L. Kumar, J. S. Tripathy, Adv. Mater., 1999, 11, 435.
    [23] M. Nogami, Y. Moriya, J. Non-Cryst. Solids, 1980, 37, 191.
    [24] L.C. Klein, G. J. Garvey, J. Non-Cryst. Solids, 1980, 38, 39.
    [25] S.P. Makherju, J. Non-Cryst. Solids, 1980, 42, 477.
    [26] D. P. Partlow, B. E. Yoldas, J. Non-Cryst. Solids, 1981, 46, 153.
    [27] B. E. Yoldas, J. Non-Cryst. Solids, 1982, 51, 105.
    [28] Y. Paoting, L. Hsiaoming, W. Yuguang, J. Non-Cryst. Solids, 1982, 52, 511.
    [29] E. J. A. Pope, J. D. Mackenzie, J. Non-Crystalline. Solids, 1986, 87, 185.
    [30] T. W. Zerda, I. Artaki, J.Jonas, J. Non-Crystalline. Solids, 1986, 81, 365.
    [31] B. Himmel, T. Gerber, H. Burger, J. Non-Crystalline. Solids, 1987, 91, 122.
    [32] T. Adachi, S. Sakka, J. Non-Cryst. Solids, 1988, 100, 250.
    [33] Artaki, T. W. Zerda, J. Jonas, J. Non-Cryst. Solids, 1986, 81, 381.
    [34] D. R. Ulruch, Ceramic Bull., 1985, 64, 1444.
    [35] D. R. Uhlmann, T. Suratwala, K. Davidson, J. M. Boulton, G. Teowee, J. Non-Cryst. Solids, 1997, 218, 113.
    [36] D. R. Uhlmann, G. P. Rajendran, SPIE Proc., 1990, 1328, 270
    [37] B. E. Yoldas, J. Sol-Gel Sci. Technol., 1993, 1, 65.
    [38] J. Y. Ying, C.P. Mehnert, M. S. Wong, Angew. Chem. Int. Ed. Engl., 1999, 38, 56.
    [39] I. Corma, Chem. Rev., 1997, 97, 2373.
    [40] P. T. Tanev, M. Chibwe, T. J. Pinnavaia, Nature, 1994, 368, 321.
    [41] S. Krijnen, H. C. L. abbenhuis, R. W. J. Hansen, J. H. C. van Hooff, R. A. van Santen, Angew. Chem. Int. Ed. Engl., 1998, 37, 356.
    [42] R. A. Assink, B. D. Kay, J. Non-Crystalline. Solids, 1988, 88, 359.
    [43] R. K. Iler, The Chemistry of Silica, Wiley, New York, 1979.
    [44] L. S. Dent-Glasser, E. E. Lachowski, J. Chem. Soc. Dolton Trans. , 1980, 393, 399.
    [45] C. J. Brinker, K. D. Keeffer, D. W. Schaefer, C. S. Ashley, J. Non-Crystalline. Solids, 1982, 48, 47.
    [46] W. Stöber, A. Fink, E. Bohn, J. Colloid Interface Sci., 1986, 26, 62.
    [47] S. Sakka, K. Kamiya, K. Makita, Y. Yamamoto, J. Non-Cryst. Solids, 1984, 63, 223.
    [48] C. J. Brinker, K. D. Keefer, R. A. Assink, B. D. Kay, C. S. Ashley, J. Non-Cryst. Solids, 1984, 63, 45.
    [49] G. Orcel, L. Hench, J. Non-Cryst. Solids, 1986, 79, 177.
    [50] T. Adachi, S. Sakka, J. Non-Cryst. Solids, 1988, 99, 118.
    [51] T. Adachi, S. Sakka, M, Okada, Y. K. Shi, J. Non-Cryst. Solids, 1987, 95, 970.
    [52] D. Goswami, S.K. Medda, G. De, ACS applied materials & interfaces. 2011, 3, 3440.
    [53] W. Jiang, C.M. Grozea, Z. Shi, G. Liu, ACS applied materials & interfaces. 2014, 6, 2629.
    [54] S.A. Kulinich, M. Farzaneh, Applied Surface Science. 2009, 255, 4056.
    [55] S. Standeker, Z. Novak, Z. Knez, Journal of colloid and interface science. 2007, 310, 362.
    [56] G. Wang, J. Yang, Q. Shi, Journal of Coatings Technology and Research. 2010, 8, 53.
    [57] Y. Xiu, D.W. Hess, C.P. Wong, Journal of colloid and interface science. 2008, 326, 465.
    [58] T. Young, Trans. R. Soc. London, 1805, 95, 65.
    [59] D. A. Loy, K. J. Shea, Chem. Pev., 1995, 95, 1431.
    [60] B. M. Novak, Adv. Mater., 1993, 5, 422.
    [61] G. Philipp, H. Schmidt, J. Non-Cryst. Solids, 1984, 63, 283.
    [62] W. Barthiott, C. Neinhuis, Planta. 1997, 1, 202.
    [63] D. Goswami, S.K. Medda, G. De, ACS applied materials & interfaces. 2011, 3, 3440.

    QR CODE
    :::