| 研究生: |
程敬智 Ching-chih Cheng |
|---|---|
| 論文名稱: |
以整合式子空間分析為基礎之多角度人臉辨識 Multi-view Face Recognition with Unified Subspace Analysis |
| 指導教授: |
范國清
Kuo-Chin Fan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系 Department of Computer Science & Information Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 64 |
| 中文關鍵詞: | 整合式子空間 、多角度人臉辨識 |
| 外文關鍵詞: | Unified Subspace, Multi-view Face Recognition |
| 相關次數: | 點閱:7 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
人臉辨識的研究迄今已有數十年的發展,其研究成果已能在機場的安檢系統、社區的門禁系統、ATM的認證或諸如許多商業化的NB影像認證等相關的安全辨識應用中發現其蹤影,但在上述的監控應用中,其辨識效果的好壞往往會受到表情、視角、光影、原始影像的解析度等因子所左右,也因為如此,一直以來都有許多相關的研究專門處理相對應的問題。
然而以現階段的研究來說,大多數的演算法對於具有角度變化的人臉辨識問題仍沒有一個很好的處理方法,因此本論文提出了一個兩階式的辨識方法,首先對輸入影像的視角做第一階段的預測,之後針對視角預測的結果進一步的辨識出其所屬的類別,這樣做的好處不但可以排除視角變化較劇烈的影像集,又可以減少影像比對的次數。
在實驗的部分,我們將漸進式的呈現出單一視角以及多重視角的實驗數據,實驗的最後我們可以得知,視角預測的前處理步驟可以對整個辨識系統的效能達到一定程度的提升。
Face recognition technique has been developed for several years. The research results can be found in several applications, such as airport security system, access control system, ATM verification system, and surveillance system. However, the performance of identification result will be heavily affected by the factors of expression, pose, illumination and resolution of image. Hence, many relating algorithms were developed focusing on resolving these problems.
Until now, most of the existing algorithms can still not fully resolve the pose problem in face recognition. In response to this need, we present a two stage identification method to improve the performance of face recognition system handling pose problem. In our proposed method, we first predict the pose variations for all input images. After that, we further classify the image class in the corresponding pose label set. The advantage of our proposed method can not only eliminate the difference in different pose sets but also reduce image matching time for recognition. Experimental results reveal that the proposed face recognition method with pose classifier can achieve better classification result.
[1] M. Kirby, L. Sirovich, Application of the Karhunen–Loeve procedure for the characterization of human face, IEEE Trans. Pattern Anal. Mach. Intell. 12 (1) (1990) 103–108.
[2] M. Turk, A. Pentland, Eigenfaces for recognition, J. Cogn. Neurosci. 3 (1) (1991) 71–86.
[3] M.A. Turk, A.P. Pentland, Face recognition using eigenfaces, in: Proceedings of the IEEE Conference on CVPR, 1991, pp. 586–591.
[4] P.N. Belhumeur, J.P. Hespanha, D.J. Kriegman, Eigenfaces vs. Fisherfaces: recognition using class specific linear projection,, IEEE Trans. Pattern Anal. Mach. Intell. 19 (7) (1997) 711–720.
[5] Y. Gao, M.K.H. Leung, Face recognition using line edge map, IEEE Trans. Pattern Anal. Mach. Intell. 24 (6) (2002) 764–779.
[6] Y. Gao, Y. Qi, Robust visual similarity retrieval in single model face databases, Pattern Recognition 38 (2005) 1009–1020.
[7] R. Brunelli, T. Poggio, Face recognition: features versus templates, IEEE Trans. Pattern Anal. Mach. Intell. 15 (10) (1993) 1042–1052.
[8] A. Pentland, B. Moghaddam, T. Starner, View-based and modular eigenspaces for face recognition, in: Proceedings of the IEEE Conference on CVPR, 1994, pp. 84–91.
[9] L. Wiskott, J.M. Fellous, N. Kruger, C. von der Malsburg, Face recognition by elastic bunch graph matching, IEEE Trans. Pattern Anal. Mach. Intell. 19 (7) (1997) 775–779.
[10] M. Lades, J.C. Vorbruggen, J. Buhmann, J. Lange, C. van der Malsburg, R.P. Wurtz, W. Konen, Distortion invariant object recognition in the dynamic link architecture, IEEE Trans. Comput. 42 (1993) 300–311.
[11] T. Ahonen, A. Hadid, M. Pietik‥ainen, Face description with local binary patterns: application to face recognition, IEEE Trans. Pattern Anal. Mach. Intell. 28(12) (2006) 2037–2041.
[12] D.J. Beymer, Face recognition under varying pose, in: Proceedings of the IEEE Conference on CVPR, 1994, pp. 756–761.
[13] R. Singh, M. Vatsa, A. Ross, A. Noore, A mosaicing scheme for pose-invariant face recognition, IEEE Trans. Syst., Man, Cybern. B, Cybern. 37 (5) (2007) 1212–1225.
[14] D. Beymer, T. Poggio, Face recognition from one example view, in: Proceedings of the International Conference on Computer Vision, 1995, pp. 500–507.
[15] D. Gonzalez-Jimenez, J.L. Alba-Castro, Toward pose-invariant 2-D face recognition through point distribution models and facial symmetry, IEEE Trans. Inf. Forensic Secur. 2 (3–1) (2007) 413–429.
[16] T.F. Cootes, G.V. Wheeler, K.N. Walker, C.J. Taylor, View-based active appearance models, Image Vision Comput. 20 (2002) 657–664.
[17] F. Kahraman, B. Kurt, M. Gokmen, Robust face alignment for illumination and pose invariant face recognition, in: Proceedings of the IEEE Conference on CVPR, 2007, pp. 1–7.
[18] K. Fukunnaga, Introduction to Statistical Pattern Recognition. Academic Press, second ed., 1991.
[19] G. Provan, P. Langley, and P. Smyth, “Bayesian Network Classifier”, Machine Learning, 29, 131–163 (1997).
[20] P. Cheng, P. Tung, “A novel hybrid approach based on sub-pattern technique and whitened PCA for face recognition.” Pattern Recognition 42 (2009) 978-984.
[21] D. Swets and J. Weng, Using discriminant eigenfeatures for image retrieval. Pattern Anal. Mach. Intell. 18 8 (1996), pp. 831–836.
[22] B. Moghaddam, T. Jebara, and A. Pentland, “Bayesian Face Recognition”, Pattern Recognition, Vol. 33, pp. 1771-1782, 2000.
[23] B. Moghaddam, A. Pentland, Probabilistic visual learning for object detection, IEEE Proceedings of the Fifth International Conference on Computer Vision (ICCV''95), Cambridge, USA, June 1995.
[24] M.E. Tipping, C.M. Bishop, Mixtures of principal component analyzers, Proceedings of the IEEE 5th International Conference on Artificial Neural Networks, Cambridge, UK, June 1997, pp. 13-18.
[25] X. Wang and X. Tang, “Unified Subspace Analysis for Face Recognition”, Proc. Int’l Conf. Computer Vision, pp. 679-686, 2003.
[26] Vladimir N. Vapnik, “The nature of statistical learning theory” New York: Springer-Verlag, 1995
[27] K. Jonsson, J. Matas, J. Kittler and Y. Li, “Learning support vectors for face verification and recognition”, IEEE International Conference on automatic Face and Gesture Recognition, pp.208 - 213, 2000.
[28] Bernd Heisele, Purdy Ho, and Tomaso Poggio, “Face recognition with support vector machines: Global versus component-based approach”, IEEE International Conference on Computer Vision, Vol. 2, pp.688 - 694, July 2001.
[29] P.J. Phillips, H. Moon, and S.A. Rozvi, “The FERET Evaluation Methodolody for Face Recognition Algorithms,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 22, no. 10, pp. 1090-1104, Oct. 2000.
[30] T. Sim, S. Baker, and M. Bsat, "The CMU Pose, Illumination, and Expression (PIE) Database", Proc. the 5th IEEE International Conference on Automatic Face and Gesture Recognition (FG''02), Washington, DC, May 2002.