跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黎煌恩
Huynh Le Em
論文名稱: 波流作用下橋面板的水力負載
Hydrodynamic Loads of Bridge Decks in Wave-Current Combined Flows
指導教授: 朱佳仁
Chu Chia-Ren
口試委員:
學位類別: 博士
Doctor
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 148
中文關鍵詞: 波浪負載橋面板波流交互作用大渦模式阻力係數升力係數孤立波莫里森方程式KC數
外文關鍵詞: Wave loads, Bridge deck, Wave-current flow, Large Eddy Simulation, Drag coefficient, Lift coefficient, Morison equation, Keulegan-Carpenter number, Solitary wave
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用三維大渦模式和流體體積法來探討靠近水面之橋面板的水力負載以及波浪/結構物/紊流之互制作用。模擬得之波高和橋面板所受的壓力、總力皆與實驗結果比對,以驗證數值模式的正確性。再使用此數值模式研究各種狀況下,矩形橋面板周圍的波浪/紊流相互作用與矩形橋面板所受的波浪力,流況包括週期波、孤立波和波流合併流。
    週期波的模擬結果顯示:橋面板後方的波高小於橋面板前方的波高,且因為碎波和橋面板引起的紊流會影響橋面板的表面壓力。而橋面板上的阻力、升力和彎矩皆與波高H成線性正比關係,故可採用波高H標準化橋體所受之阻力、升力。而無因次之波浪力係數與雷諾數(橋體的縮尺比)無關,亦即阻力、升力係數可適用於不同的波高、橋體大小。由於波浪引起的壓力在隨著水深增加而遞減,有最大波浪力發生於橋體靠近水面(潛沒比S/D = 0 ~ 1.0)時,隨著潛沒比的增加,橋面板的波浪負載減小。
    本研究並探討波流交互作用下,矩形橋面板所受的水動力負載。依據模擬結果,本研究提出一個修正莫里森方程式來預測橋面板的水力負載,將分為同向流造成之穩態項和波浪所造成之加速度項。而穩態項正比於流速,加速度項與波高H成線性正比關係。且由於橋面板長度大於橋面板厚度,因此造成橋面板破壞的主要外力為作用在橋面板上方的垂向力。此外,阻力係數與波高H、縱橫比L/D和Keulegan-Carpenter (KC)數無關,而升力係數取決於潛沒比S/D。工程設計可以使用莫里森方程式和矩形橋面板的最大阻力係數CD = 2.73,格子樑橋面板的阻力係數CD = 2.51,升力係數CL = -2.05,慣性係數CMx = 0.95和CMz = 2.53來計算波流交互作用的最大負載。
    孤立波施予橋面板的負載則與波高A的成正比,可用參考速度Ur = [gA(A+h)/h]1/2 來標準化橋體所受波浪力,而無因次化之阻力係數、升力係數與波高無關。但阻力、升力係數皆隨著長深比及阻滯比的增加而增加。對於相同的波高,孤立波的波浪力大於週期波之波浪力。而最大正阻力係數CD = 1.40,負阻力係數CD = -0.95,正升力係數CL = 0.57,負升力係數CL = -0.86可用於計算孤立波之波浪力。


    This study uses a Large Eddy Simulation (LES) model and the Volume of Fluid (VOF) method to examine the wave/turbulence interactions and hydrodynamic loadings on submerged bridge decks. The flow condition includes periodic waves, solitary waves, and wave-current combined flows. The surface waves in the numerical model were generated by an internal source function. The simulated wave heights and surface pressures on the rectangular deck are compared with the experimental results to validate the accuracy of the present numerical model. The numerical model was then used to examine the wave loads of different wave conditions.
    For periodic wave flows, the influences of wave height, submergence ratio, scale ratio, and blockage ratio on the wave loads of the submerged deck are studied. The simulation results point out that the drag, lift, and pitching moment on the deck are linearly proportional to the wave height H. The dimensionless force coefficients are functions of submergence depth S, but are independent of Reynolds number of the bridge deck. The maximum force coefficients occur when the deck is near the water surface (submergence ratio S/D = 0 ~ 1.0) and decrease with the increasing submergence ratio. This results from the wave-induced pressure being the largest close to the water surfaces. Moreover, the turbulence induced by the wave breaking affects the leeward pressures and hydrodynamic forces on the bridge deck.
    For wave-current combined flows, the influences of current velocity, wave height, deck length, and blockage ratio on the wave loads are examined. The simulation results concluded that the wave loads are linearly proportional to wave height H when H  0.4h, h is the water depth. The hydrodynamic load mainly comes from the surface pressures on the upper side of the decks due to the deck length being much larger than the deck thickness. A modified Morison equation is proposed to predict the hydrodynamic loadings on the deck. By adopting the reference velocity Ur = (gH)1/2 for wave-induced flow, the hydrodynamic loads can be separated into a steady term (current-induced force) and an acceleration term (wave-induced force). Furthermore, the drag coefficient is independent of the wave height H, aspect ratio L/D, and the Keulegan-Carpenter (KC) number, while the lift coefficient depends on the submergence ratio S/D. The maximum drag coefficient CD = 2.73 for a rectangular deck, drag coefficient CD = 2.51 for a girder deck, lift coefficient CL = -2.05, the inertia coefficients CMx = 0.95 and CMz = 2.53 could be used to design bridge decks against wave-current combined flows.
    For solitary wave flows, the influences of current velocity, wave height, deck length, and blockage ratio on the wave loads of a rectangular deck are investigated. The simulation results indicate that the wave loads of solitary waves are larger than those of the periodic waves of the same wave amplitude. In addition, the resulting force coefficients are independent of the wave heights when the reference velocity Ur = [gA(A+h)/h]1/2 is used to normalize the hydrodynamic loads, and A is the amplitude of the solitary wave. Nonetheless, the drag and lift coefficients increase nonlinearly with increasing the aspect ratio and blockage ratio. For coastal engineers, the maximum drag coefficient CD = 1.40 and -0.95, and the lift coefficient CL = 0.57 and -0.86 can be utilized to compute the wave loads of solitary waves.

    CHINESE ABSTRACT/中文摘要 i ABSTRACT iii ACKNOWLEDGMENTS v TABLE OF CONTENTS vi LIST OF FIGURES viii LIST OF TABLES xiv CHAPTER 1. INTRODUCTION 1 1.1 Review for Periodic Waves 2 1.2 Review for Wave/Current combine Flows 7 1.3 Review for Solitary Waves 9 CHAPTER 2. NUMERICAL MODEL 12 2.1 Governing equations 12 2.2 Volume of Fluid method and Boundary conditions 13 2.3 Internal source wave maker and Sponge layer 15 CHAPTER 3. MODEL VALIDATION 17 3.1 Periodic Waves 17 3.2 Wave/Current Combined Flows 25 3.3 Solitary Waves 33 CHAPTER 4. PERIODIC WAVES 39 4.1 Effect of wave height 42 4.2 Scale effect 48 4.3 Submergence effect 50 4.4 Blockage effect 58 CHAPTER 5. WAVE/CURRENT COMBINED FLOWS 62 5.1 Effect of current velocity 63 5.2 Effect of wave height 73 5.3 Effect of aspect ratio 82 5.4 Effect of blockage ratio 84 5.5 Girder bridge deck 86 CHAPTER 6. SOLITARY WAVES 93 6.1 Effect of wave height 93 6.2 Effect of aspect ratio 102 6.3 Effect of blockage ratio 106 6.4 Comparison of periodic and solitary waves 107 CHAPTER 7. CONCLUSIONS 109 APPENDIX - RESPONSE TO COMMITTEE QUESTIONS AND COMMENTS 112 REFERENCES 122

    American Association of State Highway and Transportation Officials (2008). AASHTO Guide specifications for bridges vulnerable to coastal storms. Washington, D.C., USA.
    Anagnostopoulos, P., Minear, R. (2004). Blockage effect of oscillatory flow past a fixed cylinder. Applied Ocean Research. 26, 147-153. doi.10.1016/j.apor.2004.11.001.
    Andreas, E., Wang, S. (2007). Predicting significant wave height off the northeast coast of the United States. Ocean Eng. 34, 1328-1335. doi.org/10.1016/j.oceaneng.2006.08.004
    Bearman, P.W., Graham, J.M.R., Obasaju, E.D., Drossopoulos, G.M. (1985). Forces on cylinders in viscous oscillatory flow at low Kuelegan–Carpenter numbers. J. Fluid Mech., 154, 337–365. doi.org/10.1017/S0022112085001562
    Cabot, W., Moin, P. (2000). Approximate wall boundary conditions in the large eddy simulation of high Reynolds number flow. Flow Turbul. Combust. 63, 269-291. doi.org/10.1023/A:1009958917113
    Catalano, P., Wang, M., Iaccarino, G., Moin, P. (2003). Numerical simulation of the flow around a circular cylinder at high Reynolds number. Int J Heat Fluid Flow. 24(4):463-9. doi.org/10.1016/S0142-727X(03)00061-4
    Chang, K.A., Hsu, T.J., Liu, P.L.F. (2001). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle, Part I. Solitary waves. Coastal Eng. 44, 13-36. doi.org/10.1016/S0378-3839(01)00019-9.
    Chang, K.A., Hsu, T.J., Liu, P.L.F. (2005). Vortex generation and evolution in water waves propagating over a submerged rectangular obstacle, Part II. Cnoidal waves. Coastal Eng. 52, 257-283. http://doi.org/10.1016/j.coastaleng.2004.11.006.
    Chen, B., Lu, L., Greated, C.A., Kang, H. (2015). Investigation of wave forces on partially submerged horizontal cylinders by numerical simulation. Ocean Eng. 107, 23-31. doi.org/10.1016/j.oceaneng.2015.07.026.
    Chu, C.-R., Chung, C.-H., Wu, T.-R., Wang, C.-Y. (2016). Numerical analysis of free surface flow over a submerged rectangular bridge deck. J. Hydraulic Eng. 142(12), 1-11. doi.org/10.1061/(ASCE)HY.1943-7900.0001177.
    Chu, C.-R., Wu, Y.-R., Wang, C.-Y., and Wu, T.-R. (2018a). Slosh-induced hydrodynamic force in a water tank with multiple baffles. Ocean Eng. 167, 282-292. doi.org/10.1016/j.oceaneng.2018.08.049.
    Chu, C.-R., Lin, Y.-A., Wu, T.-R., Wang, C.-Y. (2018b). Hydrodynamic force of a circular cylinder close to the water surface. Computers & Fluids. 171, 154-165. doi.org/10.1016/j.compfluid.2018.05.032.
    Chu, C.-R., Huynh, L.-E., Wu, T.-R. (2022). Large Eddy Simulation of the wave loads on submerged rectangular decks. Applied Ocean Research. 120, 103051. doi.org/10.1016/j.apor.2022.103051.
    Cuomo, G., Shimosako, K. I., Takahashi, S. (2009). Wave-in-deck loads on coastal bridges and the role of air. Coastal Eng. 56(8): 793–809. doi.org/10.1016/j.coastaleng.2009.01.005
    Dean, R.G., Dalrymple, R.A. (1984). Water Wave Mechanics for Engineers and Scientists. Prentice-Hall, Inc. New York.
    Deardorff J.W. (1970). A numerical study of three-dimensional turbulent channel flow at large Reynolds numbers. J. Fluid Mech., 41, 453-80.
    DeLong, M. (1997). Two examples of the impact of partitioning with Chaco and Metis on the convergence of additive Schwarz-preconditioned FGMRES. Technical Rep. No. LA-UR-97-4181, Los Alamos National Laboratory, Los Alamos, NM.
    Dong, J., Xue, L., Cheng, K., Shi, J., Zhang, C. (2020). An experimental investigation of wave worces on a submerged horizontal plate over a simple slope. J. Mar. Sci. Eng. 8(7):507. doi.org/10.3390/jmse8070507
    Eymard, R., Gallouët, T., and Herbin, R. (2000). Finite volume methods. In Solution of Equation in ℝn (Part 3), Techniques of Scientific Computing (Part 3) (Vol. 7, pp. 713–1018). Elsevier. https://doi.org/https://doi.org/10.1016/S1570-8659(00)07005-8
    Ferziger, J. H., Peric, M., and Leonard, A. (1997). Computational Methods for Fluid Dynamics Table of Contents. Physics Today, 50(3), 80. http://scitation.aip.org/content/aip/magazine/physicstoday/article/50/3/10.1063/1.881751
    Gullbrand, J., Chow, F. K. (2003). The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid Mech. Vol. 495, 322-341.
    Hamill, L. (1999). Bridge hydraulics, E&FN Spon, London.
    Hasanpour, A., Istrati, D., Buckle, I. (2021). Coupled SPH–FEM Modeling of Tsunami-Borne Large Debris Flow and Impact on Coastal Structures. J. Mar. Sci. Eng. 9, 1068. doi.org/10.3390/jmse9101068
    Hayatdavoodi, M., Seiffert, B., Ertekin, R.C. (2015). Experiments and calculations of cnoidal wave loads on a flat plate in shallow-water. J. Ocean Eng. Mar. Energy. 1, 77-99. doi.org/10.1007/s40722-014-0007-x
    Hayatdavoodi M., Ertekin R.C. (2016). Review of wave loads on coastal bridge decks. Appl. Mech. Rev. 68, 1-16. doi.org/10.1115/1.4033705.
    Hayatdavoodi, M., Treichel, K., Ertekin, R.C. (2019). Parametric study of nonlinear wave loads on submerged decks in shallow water. J. Fluids and Structures. 86, 266-289. doi.org/10.1016/j.jfluidstructs.2019.02.016.
    Hirt, C.W., Nichols, B.D. (1981). Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 39(1), 201-225.
    Hsu, H., Chen, Y., Hsu, J., Tseng, W. (2009). Nonlinear water waves on uniform current in Lagrangian coordinates. J. of Nonlinear Mathematical Physics. 16(1): 47-61. doi.org/10.1142/S1402925109000054
    Huang, B., Yang, Z., Zhu, B., Zhang, J., Kang, A., Pan, L. (2019). Vulnerability assessment of coastal bridge superstructure with box girder under solitary wave forces through experimental study. Ocean Eng. 189, 106337. doi.org/10.1016/j.oceaneng.2019.106337
    Jung, K.H., Chang K.A., Huang, E.T. (2004). Two-dimensional flow characteristics of wave interactions with a fixed rectangular structure. Ocean Eng. 31, 975-998. doi.org/10.1016/j.oceaneng.2003.12.002
    Istrati, D., Buckle, I.G., Lomonaco, P., Yim, S., Itani, A. (2017). Tsunami induced forces in bridges: Large-scale experiments and the role of air-entrapment. Proceedings of the Intern. Conference Coastal Eng. No.35. doi.org/10.9753/icce.v35.structures.30
    Istrati, D., Buckle, I.G., Lomonaco, P., Yim, S. (2018). Deciphering the tsunami wave impact and associated connection forces in open-girder coastal bridges. J. Mar. Sci. Eng. 2018, 6(4), 148. doi.org/10.3390/jmse6040148
    Istrati, D., Buckle, I. (2019). Role of trapped air on the tsunami-induced transient loads and response of coastal bridges. Geosciences, 9 (4), 191. doi.org/10.3390/geosciences9040191
    Istrati, D., Buckle, I.G. (2021a). Tsunami Loads on Straight and Skewed Bridges-Part 1: Experimental Investigation and Design Recommendations (No. FHWA-OR-RD-21-12). Oregon. Dept. of Transportation. Research Section. https://rosap.ntl.bts.gov/view/dot/55988
    Istrati, D., Buckle, I.G. (2021b). Tsunami Loads on Straight and Skewed Bridges–Part 2: Numerical Investigation and Design Recommendations (No. FHWA-OR-RD-21-13). Oregon. Dept. of Transportation. Research Section. https://rosap.ntl.bts.gov/view/dot/55947
    Istrati, D., Hasanpour, A. (2022). Numerical investigation of dam break-induced extreme flooding of bridge superstructures, In Proceedings of the 3rd International Conference on Natural Hazards & Infrastructure, Athens, Greece.
    Johnson, H. K., Karambas, T. V., Avgeris, I., Zanuttigh, B., Gonzalez-Marco, D., Caceres. I. (2005). Modelling of waves and currents around submerged break waters. Coastal Eng. 52 (10–11): 949-969. doi.org/10.1016/j.coastaleng.2005.09.011
    Jung, K.H., Chang, K.A., Huang, E.T. (2004). Two-dimensional flow characteristics of wave interactions with a fixed rectangular structure. Ocean Eng. 31, 975-998. doi.org/10.1016/j.oceaneng.2003.12.002
    Kamath, A., Alagan, C.M., Bihs, H., Arntsen, ØA. (2015). CFD investigations of wave interaction with a pair of large tandem cylinders. Ocean Eng. 108: 738-748. doi.org/10.1016/j.oceaneng.2015.08.049
    Kang, A., Zhu, B., Lin, P., Ju, J., Zhang, J., Zhang, D. (2020). Experimental and numerical study of wave-current interactions with a dumbbell-shaped bridge cofferdam. Ocean Eng. 210:107433. doi.org/10.1016/j.oceaneng.2020.107433
    Keulegan, G.H., Carpenter, L.H. (1958). Forces on cylinders and plates in an oscillating fluid, J. Research National Bureau of Standards, 60 (5): 423-440.
    Kolmogorov, A. (1941). The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nuak, SSSR, 30: 301-305.
    Korzekwa, D.A. (2009). Truchas - a multi-physics tool for casting simulation. Intern. J. of Cast Metals Research. 22:1-4, 187-191. doi:10.1179/136404609X367641.
    Kundu, P.K. (1976). An analysis of inertial oscillations observed near Oregon coast. J. Phys. Oceanography. 6(6), 879-893. doi.org/10.1175/1520-0485(1976)006 <0879:AAOIOO>2.0.CO;2
    Lin, P. (2006). A multiple-layer σ-coordinate model for simulation of wave-structure interaction. Comput. Fluids; 35:147-167. doi.org/10.1016/j.compfluid.2004.11. 008.
    Lin, M.Y., Huang, L.H. (2012). Numerical investigation of wave-structure interaction using a Lagrangian vortex method. Ocean Eng. 44, 11-22. doi.org/10.1016/j.oceaneng.2012.01.027.
    Lin, P., Liu, P.L.F. (1999). Internal wave-maker for Navier-Stokes equations models. J. Waterway, Port, Coastal, Ocean Eng. 125(4), 207-215. doi.org/10.1061/(ASCE) 0733-950X(1999)125:4(207)
    Liu, Q., Sun, T., Wang, D., Wei, Z. (2019). Wave uplift force on horizontal panels: a laboratory study. J. Oceanology and Limnology. 37, 1899-1911. doi.org/10.1007/s00343-019-8292-9.
    Lo, H.Y., Liu, P.L.F. (2014). Solitary waves incident on a submerged horizontal plate. J. Waterway, Port, Coastal, Ocean Eng. Volume 140, issue: 003. doi.org/ 10.1061/(ASCE)WW.1943-5460.0000236.
    Maruyama, K., Tanaka, Y., Kosa, K., Hosoda, A., Arikawa, T., Mizutani, N., Nakamura, T. (2013). Evaluation of tsunami force acting on bridge girders. The Thirteenth East Asia-Pacific Conference on Structural Engineering and Construction (EASEC-13), 11-13.
    Murali, K., Sundar, V., Setti, K. (2009). Wave-induced pressures and forces on deck slabs near the free surface. J. Waterway, Port, Coastal, Ocean Eng. 135(6): 269-277. doi.org/10.1061/(ASCE)0733-950X(2009)135:6(269)
    Okajima, A. (1983). Flow around a rectangular cylinder with a section of various width/height ratios. J. of Wind Eng. 17, 1-19. doi.org/10.5359/jawe.1983.17_1.
    O’Neil, J., Meneveau, C. (1997). Subgrid-scale stresses and their modelling in a turbulent plane wake. J. Fluid Mech. 349, 253-293. doi.org/10.1017/S0022112097006885.
    Padgett, J., DesRoches, R., Nielson, B., Yashinsky, M., Kwon, O.S., Burdette, N., Tavera, E. (2008). Bridge damage and repair costs from Hurricane Katrina. J. Bridge Eng. 13, 6-14. doi.org/10.1061/(ASCE)1084-0702(2008)13:1(6)
    Pope, S.B. (2000). Turbulent Flows. Cambridge, U.K., Cambridge University Press.
    Qu, K., Tang, H., Agrawal, A., Cai, Y. (2017). Hydrodynamic effects of solitary waves impinging on a bridge deck with air vents. J. Bridge Eng. 22(7), 04017024. doi.org/10.1061/(ASCE)BE.1943-5592.0001040.
    Qu, K., Tang, H., Agrawal, A., Cai, Y., Jiang, C. (2018). Numerical investigation of hydrodynamic load on bridge deck under joint action of solitary wave and current. Applied Ocean Res. 75, 100-116. https://doi.org/10.1016/j.apor.2018.02.020.
    Sarfaraz, M., Pak, A. (2017). SPH numerical simulation of tsunami wave forces impinged on bridge superstructures. Coastal Eng. 121, 145–157. doi.org/10.1016/j.coastaleng.2016. 12.005.
    Seiffert, B., Hayatdavoodi, M., Ertekin, R.C. (2014). Experiments and computations of solitary-wave forces on a coastal-bridge deck. Part I, Flat plate. Coastal Eng. 88, 194-209. doi.org/10.1016/j.coastaleng.2014.01.005.
    Shimada, K., Ishihara, T. (2002). Application of modified k– model to the prediction of aerodynamic characteristics of rectangular cross section cylinders. J. Fluids Struc. 16, 465-485. doi.org/10.1006/jfls.2001.0433
    Smagorinsky, J. (1963). General circulation experiments with the primitive equations, I. The basic experiment. Mon. Weather Rev. 91, 99-164.
    Stewart, S. (2004). Tropical Cyclone Report: Hurricane Ivan. National Oceanic and Atmospheric Administration, Silver Spring, MD 44.
    Troch, P., De Rouck, J. (1998). Development of two-dimensional numerical wave flume for wave interaction with rubble mound breakwaters. Coast. Eng. Proceedings of Conference, Copenhagen, Denmark. 1638-1649.
    Tsai, Y.S., Lo D.C. (2020). A ghost-cell immersed boundary method for wave–structure interaction using a two-phase flow model. Water. 12(12), 3346. doi.org/10.3390/w12123346
    Tutar, M., Holdo, A.E. (2001). Computational modelling of flow around a circular cylinder in sub-critical flow regime with various. Int. J. Numer. Meth. Fluids. 35, 763-784. doi.org/10.1002/1097-0363(20010415)35:7<763:AID-FLD112>3.0.CO; 2-S
    Umeyama, M. (2011). Coupled PIV and PTV measurements of particle velocities and trajectories for surface waves following a steady current. J. Waterway, Port, Coastal, Ocean Eng. 137 (2): 85-94. doi.org/10.1061/(ASCE)WW.1943-5460. 0000067
    Venugopal, V., Varyani, K.S., Barltrop, N.D.P. (2006). Wave force coefficients for horizontally submerged rectangular cylinders. Ocean Eng. 33, 1669-1705. https://doi.org/10.1016/j.oceaneng.2005.09.007.
    Venugopal, V., Varyani, K.S., Westlake, P.C. (2009). Drag and inertia coefficients for horizontally submerged rectangular cylinders in waves and currents. J. Eng. Mar. Environ. 223(1), 121-136. doi:10.1243/14750902JEME124
    Vinokur, M. (1989). An analysis of finite-difference and finite-volume formulations of conservation laws. Journal of Computational Physics, 81(1), 1–52. doi.org/10.1016/0021-9991(89)90063-6
    Wei, Z., Dalrymple, R. A. (2016). Numerical study on mitigating tsunami force on bridges by an SPH model. J. Ocean Eng. Mar. Energy., 2(3), 365–380. https://link.springer.com/article/10.1007/s40722-016-0054-6
    Wu, T. R. (2004). A numerical study of three-dimensional breaking waves and turbulence effects. Doctoral Dissertation of Cornell University.
    Wu, T.R., Chu, C.R., Huang, C.J., Wang, C.Y., Chien, S.Y., Chen, M.Z. (2014). A two-way coupled simulation of moving solids in free-surface flows. Computers & Fluids. 100, 347-355. doi:10.1016/.compfluid.2014.05.010
    Wu, T.R., Lo, H.Y., Tsai, Y.L., Ko, L.H., Chuang, M.H., Liu, P.L.F. (2021). Solitary wave interacting with a submerged circular plate. J. Waterway, Port, Coastal, and Ocean Eng. 147(1): 04020046. https://doi.org/10.1061/(ASCE)WW.1943-5460. 0000605
    Xiang T. Istrati, D. Yim, S.C. Buckle, I.G., Lomonaco, P. (2020). Tsunami loads on a representative coastal bridge deck – experimental study and validation of design equations. J. Waterw. Port Coast. Ocean Eng., 146(5). doi.org/10.1061/(ASCE)WW.1943-5460. 0000560
    Xiang, T. and Istrati, D. (2021). Assessment of extreme wave impact on coastal decks with different geometries via the arbitrary Lagrangian-Eulerian method. J. Mar. Sci. Eng., 9(12), 1342. doi.org/10.3390/jmse9121342
    Xu, G., Cai, C.S., Deng, L. (2016). Numerical prediction of solitary wave forces on a typical coastal bridge deck with girders. Structure & Infrastructure Engineering 13 (2), 254–272.
    Zhang, J.S., Zhang, Y., Zhang, C.S, Jeng, D.S. (2013). Numerical modeling of seabed response to combined wave–current loading. J. Offshore Mech. Arct. Eng. 135 (3), 031102. doi.org/10.1115/1.4023203
    Zhang, J.S., Zhang, Y., Jeng, D.S., Liu, P.L.F., Zhang C. (2014). Numerical simulation of wave–current interaction using a RANS solver. Ocean Eng. 75 (1), 157-164. doi.org/10.1016/j.oceaneng.2013.10.014
    Zhang, J.S., Zhu, B., Kang, A., Yin, R., Li, X., Huang, B. (2020). Experimental and numerical investigation of wave-current forces on coastal bridge superstructures with box girders. Adv. Struct. Eng. 23(7), 1438-1453. doi.org/10.1177/1369433219894238.

    QR CODE
    :::