跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王國斌
Guo-Bin Wang
論文名稱: 製備頻率梳狀糾纏光子對與其量子態重建之理論研究
Theoretical Study on the Generation of Frequency-Comb Entangled Photon Pairs and the Reconstruction of Their Quantum States
指導教授: 陳彥宏
Yen-Hung Chen
蔡秉儒
Pin-Ju Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 231
中文關鍵詞: 量子光學鈮酸鋰HOM頻率梳狀態密度矩陣量子態斷層掃描術
外文關鍵詞: Quantum Optics, LiNbO3, Hong-Ou-Mandel, Frequency Comb status, Density Matrix, Quantum state tomography
相關次數: 點閱:25下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 量子科技為當代新興且迅速發展之領域,隨著技術日益成熟,其潛力與優勢逐漸展現於各項應用中。例如,量子計算中的 Shor 演算法可快速進行質因數分解,量子感測技術則能以高精度干涉儀測量重力波,此外,量子模擬亦可應用於複雜環境之模擬分析。然而,量子技術帶來突破的同時,也對既有系統造成挑戰。尤以通訊安全為例,傳統加密系統面臨量子計算所帶來的潛在解密風險,如何在既有設備下建立兼具安全與效率的新型通訊架構,成為重要課題。
    有趣的是,這些因量子科技發展而產生的問題,也可由量子技術本身獲得解方。正如量子計算可能破解傳統加密,但量子通訊的出現,則開啟了無法被竊聽的安全通訊新篇章。透過量子金鑰分配(Quantum Key Distribution, QKD),可實現理論上無法攔截的機密傳輸,進一步提升通訊安全之極限。

    本論文研究內容可分為兩大部分。第一部分為藉由控制鋰鈮酸鹽(LiNbO₃, LN)晶體的結構設計,透過參數下轉換(Spontaneous Parametric Down-Conversion, SPDC)產生在頻率域上呈現梳狀分布的糾纏光子對,期望藉此提升通訊中每對光子可承載之資訊量。第二部分則重建量子態之密度矩陣並針對外在環境因子造成之擾動進行模擬與分析,探討其對糾纏光子態的影響程度。
    根據模擬結果,我們成功產生預期之頻率梳狀糾纏光子對,同時優化產生效率,並藉由溫度調控改變光子對頻譜位置,進一步進行 Hong-Ou-Mandel(HOM)干涉實驗模擬,重建糾纏態的密度矩陣,最後引入相位擾動進行分析。


    Quantum technology is a fast-growing and promising field. As the technology develops, its advantages are becoming more apparent in many areas. For example, Shor’s algorithm in quantum computing can factor large numbers quickly, quantum sensing can detect gravitational waves with high precision, and quantum simulation helps us study complex systems. However, these advances also create new challenges for current systems. One major issue is communication security: classical encryption methods may be broken by quantum computers. So, building new systems that are both secure and practical has become an important goal.

    Interestingly, some of these problems can also be solved using quantum technologies. While quantum computers can break traditional encryption, quantum communication opens up new ways to transmit information securely. Quantum Key Distribution (QKD), for instance, allows the sharing of secret keys in a way that cannot be eavesdropped, offering a new level of communication security.

    This thesis includes two main parts. The first part focuses on generating entangled photon pairs that form a frequency comb using a specially designed lithium niobate (LiNbO₃) crystal and spontaneous parametric down-conversion (SPDC). This can increase how much information each photon pair can carry. The second part focuses on reconstructing the density matrix of the quantum state and simulating how external disturbances affect it.

    Our simulations show that we successfully generated the desired frequency-comb entangled photons and improved the generation efficiency. By adjusting the temperature, we shifted the photons’ spectra and simulated Hong-Ou-Mandel (HOM) interference to reconstruct the quantum state's density matrix. Finally, we studied how phase disturbances affect the coherence and purity of the state.

    摘要 - xi Abstract - xiii 誌謝 - xv 目錄 - xvii 一、緒論 - 1 1.1 量子光學簡介 - 1 1.2 研究動機 - 1 1.3 內容概要 - 3 二、理論背景 - 5 2.1 光子晶體原理 - 5 2.1.1 自發參數下轉換(SPDC) - 5 2.1.2 相位匹配(PM)、準相位匹配(QPM) - 9 2.1.3 具結構變動之相位匹配函數(PMF)與其離散化表 示 - 12 2.1.4 相位失配、相位匹配、準相位匹配之複數波函數表 示 - 14 2.2 密度矩陣、光子糾纏態與光子干涉 - 18 2.2.1 密度矩陣與純態, 混態 - 18 2.2.2 光子糾纏態(Entangled state) 與聯合光譜(Joint spectrum) - 19 2.2.3 Hong–Ou–Mandel(HOM) 干涉量子態 - 22 三、非週期結構設計與頻域梳狀態產生 - 25 3.1 非週期結構演算法與相位匹配方程式頻譜設計 - 26 3.1.1 晶籌長度設計 - 26 3.1.2 波與晶籌關聯:週期與非週期結構設計 - 27 3.1.3 振幅增益與擬合線 - 29 3.1.4 演算法邏輯 - 31 3.1.5 演算法細節分析與優化 - 35 3.1.6 演算法比較與分析 - 40 3.2 頻域梳狀態(Comb-like Frequency Entangled Photon,CFEP) - 43 3.3 本章結論 - 45 四、頻域梳狀態密度矩陣與相位擾動的影響 - 47 4.1 巧合計數(Coincidence counting), 頻域梳狀態(CFEP) 與相 位擾動理論推導 - 47 4.1.1 巧合計數 - 48 4.1.2 頻域梳狀態(CFEP) 描敘 - 48 4.1.3 相位擾動 - 50 4.2 伴隨隨機相位之頻域梳狀態巧合計數模擬 - 53 4.2.1 相位擾動 - 53 4.2.2 JSA-HOM 干涉圖形 - 54 4.2.3 巧合計數 - 55 4.2.4 失諧(Detuning) 與模態間相位差 - 56 4.3 密度矩陣重建 - 63 4.4 相位擾動影響分析 - 67 五、總結與未來展望 - 73 參考文獻 - 75 附錄A supplement - 77 A.1 BS operator 計算 - 77 A.2 耦合計數 - 79 A.3 頻域梳狀態之耦合計數 - 81 A.4 擾動相位 - 88 A.5 巧合計數與密度矩陣 - 89 A.6 初始相位補償 - 93 A.7 數據補充 - 94 A.7.1 理想JSA 之干涉情況與擬合公式 - 94 A.7.2 密度矩陣之數據與擬合線 - 96 附錄B 程式碼103 B.1 Matlab 主要程式 - 104 B.2 Matlab 副程式 - 167 B.3 Matlab 改變波振幅形狀程式 - 171 B.4 Matlab 其他非必要程式 - 188

    [1] F. Arute, K. Arya, R. Babbush, et al., “Quantum supremacy using a programmable superconducting
    processor,” Nature, vol. 574, no. 7779, pp. 505–510, 2019.
    [2] C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin
    tossing,” Theoretical computer science, vol. 560, pp. 7–11, 2014.
    [3] B. Brecht, D. V. Reddy, C. Silberhorn, and M. G. Raymer, “Photon temporal modes: A
    complete framework for quantum information science,” Physical Review X , vol. 5, no. 4,
    p. 041 017, 2015.
    [4] A. K. Ekert, “Quantum cryptography based on bell's theorem,” Physical review letters,
    vol. 67, no. 6, p. 661, 1991.
    [5] N. Tagliavacche, M. Borghi, G. Guarda, et al., “Frequency-bin entanglement-based quantum
    key distribution,” npj Quantum Information, vol. 11, no. 1, p. 60, 2025.
    [6] K.-C. Chang, X. Cheng, M. C. Sarihan, and C. W. Wong, “Recent advances in highdimensional
    quantum frequency combs,” arXiv preprint arXiv:2502.08879, 2025.
    [7] P. Imany, J. A. Jaramillo-Villegas, O. D. Odele, et al., “50-ghz-spaced comb of highdimensional
    frequency-bin entangled photons from an on-chip silicon nitride microresonator,”
    Optics express, vol. 26, no. 2, pp. 1825–1840, 2018.
    [8] C. L. Morrison, F. Graffitti, P. Barrow, A. Pickston, J. Ho, and A. Fedrizzi, “Frequencybin
    entanglement from domain-engineered down-conversion,” APL Photonics, vol. 7,
    no. 6, p. 066 102, Jun. 2022, ISSN: 2378-0967. DOI: 10.1063/5.0089313.
    [9] Y. Chen, S. Ecker, J. Bavaresco, et al., “Verification of high-dimensional entanglement
    generated in quantum interference,” Physical Review A, vol. 101, no. 3, p. 032 302, 2020.
    [10] R. W. Boyd, Nonlinear optics, 4th ed. San Diego: Academic Press is an imprint of Elsevier,
    2019, ISBN: 9780128110027.
    [11] C. C. Gerry and P. Knight, Introductory quantum optics, eng. Cambridge, UK New York:
    Cambridge University Press, 2005, ISBN: 9780511791239, 9780511648373.
    [12] F. A. Laudenbach, Engineering spectrally pure quantum states with spdc using periodically
    poled crystals and pulsed laser sources, 2015.
    [13] J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, “Interactions between
    light waves in a nonlinear dielectric,” Phys. Rev., vol. 127, pp. 1918–1939, 6 Sep. 1962.
    DOI: 10.1103/PhysRev.127.1918.
    [14] L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, W. R. Bosenberg, and J. W. Pierce,
    “Quasi-phase-matched optical parametric oscillators in bulk periodically poled linbo3,”
    J. Opt. Soc. Am. B, vol. 12, no. 11, pp. 2102–2116, Nov. 1995. DOI: 10.1364/JOSAB.12.
    002102.
    [15] J. E. Midwinter and J. Warner, “The effects of phase matching method and of uniaxial
    crystal symmetry on the polar distribution of second-order non-linear optical polarization,”
    British Journal of Applied Physics, vol. 16, no. 8, p. 1135, Aug. 1965. DOI:
    10.1088/0508-3443/16/8/312.
    [16] J.-L. Tambasco, A. Boes, L. G. Helt, M. J. Steel, and A. Mitchell, “Domain engineering
    algorithm for practical and effective photon sources,” Opt. Express, vol. 24, no. 17,
    pp. 19 616–19 626, Aug. 2016. DOI: 10.1364/OE.24.019616.

    QR CODE
    :::