| 研究生: |
汪蘭君 Lan-jyun Wang |
|---|---|
| 論文名稱: |
鐵砧山現地應力場與斷層再活動分析 In-Situ Stress Field and Fault Reactivation Analysis in the Tienchanshan Field, West-central Taiwan |
| 指導教授: |
董家鈞
Jai-jyun Dong 洪日豪 Jih-hao Hung |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 應用地質研究所 Graduate Institute of Applied Geology |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 81 |
| 中文關鍵詞: | 參數敏感度分析 、現地應力量測 、斷層重新再活動 |
| 外文關鍵詞: | Sensitivity analysis, Fault reactivation, In-situ stress measurement |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用鐵砧山地區鑽井之地層密度電測、地層測驗、滲漏及擠壓水泥試驗資料分別求得區域地層垂直應力(Sv)、地層孔隙壓力(Pf)及最小水平應力(Shmin)隨深度的分佈,並利用臨界斷層破壞理論,估算最大水平應力(SHmax)。結果顯示,在鐵砧山地區打鹿頁岩內之打鹿砂層(TT-1A層)平均深度處(-2750公尺),垂直應力梯度為23.60 MPa/km(1.04 psi/ft),最小水平應力梯度為18.70MPa/km(0.83 psi/ft),其地層孔隙壓力為靜水壓的90%,為靜岩壓的40%;而在打鹿頁岩層以下(約-3000公尺),地層孔隙壓力則約為靜水壓的135%,呈現過壓狀態。再者,由前述計算的地層孔隙壓力、最小水平應力以及地層垂直應力的資料,假設臨界斷層滑移的摩擦係數為0.6,可估算出最大水平應力梯度在走向滑移應力系統(SHmax > Sv >Shmin)的上限約為 29.91 MPa/km(1.32 psi/ft)。利用井徑電測判釋在打鹿頁岩層平均裸孔伸張(最小水平應力方向)的方位角約為35o;換言之,最大水平應力方位角為125o,此一角度與台灣中西部麓山帶地區地震震源機制解以及位於台中大坑車籠埔斷層科學鑽探井所求得的最大壓縮應力方向一致。最後,透過地質力學模型模擬臨界孔隙壓差,可得知於鐵砧山地區打鹿頁岩內之打鹿砂層(T-1A層)深度附近的斷層中,以東西走向斷層最容易重新活動,西北-東南走向斷層次之,東北-西南走向的斷層較為穩定。
針對鐵砧山最適重新活動位態的斷層(f1斷層)進行參數敏感度分析,結果顯示敏感度最高者為最小水平應力,敏感最低者為垂直應力。以蒙地卡羅法進行情境分析之模擬結果顯示,在不引發f1斷層再活動之條件下,最低之灌注壓力至少為5.92MPa,相當約石油柱高764.9公尺;若灌注二氧化碳,則相當約862.9公尺。相較於打鹿砂層構造閉合約400公尺(-2500至-2900公尺)之儲集層垂深,顯示本區斷層在天然條件下灌注氣體仍相當穩定,應無斷層再活動之餘慮。
The in-situ stresses in the Tiechanshan field were determined using petroleum exploration database. The magnitudes of vertical stress (Sv), formation pore pressure (Pf) and minimum horizontal stress (Shmin) were obtained from formation density logs, repeat formation tests, and hydraulic fracturing including leak-off tests and fluid injection inside casing, respectively. The magnitude of maximum horizontal stress (SHmax) was constrained by both subsurface structural contour map at reservoir depths and frictional limit of critically stressed faults. Results show that Sv gradient is about 23.6 MPa/km (1.04 psi/ft), and Shmin gradient is 18.70 MPa/km (0.83 psi/ft). At the average depth of T-1A Sandstone (~2750 mbsl), the formation pore pressure was about 10% lower than the hydrostatic pressure and equivalent to 0.4 of the overburden pressure. Below the Talu Formation (~3 km below sea level), the formation is transitional from normal to overpressure with amount deviated from normal trend up to 35%. The upper bound of SHmax constrained by strike-slip fault stress regime (SHmax>Sv>Shmin) and coefficient of friction (μ=0.6) is about 29.91 Mpa/km (1.32 psi/ft). The average azimuth of borehole breakouts (parallel to the azimuth of Shmin), judging from four-arm caliper log in Talu Formation, is oriented about 35o; in other words, the maximum horizontal stress is oriented about 125o. Faults with azimuths of E-W and NW-SE are far easier to reactivate than those trending NE-SW in T-1A Sandstone under in-situ stress state.
Sensitivity analyses of parameters on the slip potential of optimally-oriented f1 fault indicate that Shmin has higher effect on the critical pressure perturbation and Sv is the lowest one. Scenarios tests via over 10,000 Monte Carlo Simulations show that the lowest critical perturbation pressure is 5.92MPa, which correspond to oil column height of ~765 m or carbon dioxide column height of ~ 863 m. Since the structural closure of T-1A sandstone is less than 400 m (2500-2900 mbsl), it is apparent that the injection of LNG (liquid natural gas) will not compromise the f1 fault stability.
[1]Reynolds, S., Hillis, R., and Paraschivoiu, E., “In situ stress field, fault reactivation and seal integrity in the Bight Basin, South Australia”, Exploration Geophysics, Vol. 34, pp. 174–181, 2003.
[2]吳政達、謝秉志、范振暉、林再興,「利用臨界壓降法預測地下儲氣窖地層出砂之研究」,石油鑽採工程,44,117-123頁,民國92年。
[3]范振暉、吳健一、范來富、張福光、吳世雄,「注產氣防砂技術評估」,石油探採研究彙報,26,363-365頁,民國91年。
[4]范振暉、吳健一,「利用岩石力學評估鐵砧山儲氣窖鑽水平注產氣井出砂之可能性」,石油季刊,38(1),1-13頁,民國91年。
[5]陳宏市、吳蔡松、鄭培銓、余慶泉,「鐵砧山儲氣窖注儲擴建工程」,石油鑽採工程,44,34-45頁,民國92年。
[6]吳柏裕、王勝雄、蔡鏗榮、林再興,「鐵砧山氣田儲氣之監測及應用」,石油鑽採工程,42,13-20頁,民國90年。
[7]Wiprut, D. J. and Zoback, M. D., “Fault reactivation, leakage potential, and hydrocarbon column heights in the northern North Sea”, Hydrocarbon seal quantification, Vol. 11. NPF Special Publication, Elsevier, Amsterdam, pp. 203–219, 2002.
[8]Zoback, M. D., Barton, C. A., Brudy, M., Castillo, D. A., Finkbeiner, T., Grollimund, B. R., Moos, D. B., Peska, P., Ward, C. D., Wiprut, D. J., “Determination of stress orientation and magnitude in deep wells”, International Journal of Rock Mechanics & Mining Science, Vol. 40, pp. 1049–1076, 2003.
[9]Chiaramonte L., Zoback, M. D., Friedmann, J. and Stamp, V., “Seal integrity and feasibility of CO2 sequestration in the Teapot Dome EOR pilot: geomechanical site characterization”, Environ Geol, Vol. 54, pp. 1667-1675, 2008.
[10]王墨江、周定芳、張資宜、王勝雄、王志銘,「鐵砧山氣田特性分析」,石油探採研究彙報,20,431-436頁,民國86年。
[11]Kuan, M. Y., “The evolution of the structures in the oil and gas fields in the Miaoli area, Taiwan”, Petroleum Geology of Taiwan, Vol. 10, pp. 123-138, 1972.
[12]曾繼忠、吳偉智、陳大麟,「鐵砧山氣田背斜構造之斷層封阻性探討」,台灣石油地質,36,215-240頁,民國92年。
[13]何信昌,台灣地質圖說明書,圖幅第十二號,苗栗,經濟部中央地質調查所1994。
[14]張憲卿,台灣地質圖說明書,圖幅第十七號,大甲,經濟部中央地質調查所,1994。
[15]Kuan, M. Y., “Gas reservoir study of the Tiehchenshan-Tunghsiao anticline, Miaoli, Taiwan”, Petroleum Geology of Taiwan, Vol. 4, pp. 217-239, 1965.
[16]鍾開增,「苗栗地區麓山帶之地質構造」,國立中央大學,碩士論文,民國八十五年。
[17]李長之、黃旭燦、王佳彬、吳素慧、莊恭周、沈俊卿、周定芳、邱仲信、梅文威、陳若玲,「鐵通地區石油系統再評估」,經濟部石油基金論文集,55-68頁,民國97年。
[18]Tang, C. H., ”Depositional environment of the Miocene Talu sand reservoir, northwest Taiwan, and the possibilities of stratigraphic traps”, Petroleum Geology of Taiwan, Vol. 10, pp. 109-121, 1972.
[19]Namson, J., ”Structure of the western foothills belt, Miaoli-Hsinchu area, Taiwan: (Ι) southern part”, Petroleum Geology of Taiwan, Vol. 18, pp. 31-51, 1981.
[20]羅仕榮、沈顯全,「三維地質模型建構」,石油探採研究彙報,31,149-155頁,民國98年。
[21]楊明宗、歐陽湘、柳志錫等,「水力破裂法現地應力量測及破壞準則探討」,地工技術,99 ,5-14頁,民國93年。
[22]台灣中油全球資訊網,取自http://www.cpc.com.tw/big5/content/index01.asp?sno=180&pno=108
[23]邱紹平、吳金通,油氣井測試-探採叢書之十二,初版,民國62年。
[24]中油股份有限公司,石油探採-訓練叢書(第三冊),初版,民國92年。
[25]Reynolds, S. D., Mildren, S. D., Hillis, R. R. and Meyer, J. J., “Constraining stress magnitudes using petroleum exploration data in the Cooper–Eromanga Basins, Australia”, Tectonophysics, Vol. 415, pp. 123-140, 2006.
[26]洪日豪、范振暉,「台灣竹苗地區地下應力狀態評估」,台灣中油公司探採
研究所,民國98年。
[27]洪日豪、汪蘭君,「台灣鐵砧山地區儲集層之裂隙與應力狀態分析」,經濟部石油基金論文集,94-100頁,民國98年。
[28]潘翁海、翁豐源、井雲生、陳煥彩,「地層擠裂試驗及研討」,石油鑽採工程,17,45-66頁,民國65年。
[29]Bell, J. S., “In situ stresses in sedimentary rocks (part 1): measurement techniques”, Geoscience Canada, Vol. 23, pp. 85-100, 1996.
[30]Bell, J. S., “In situ stresses in sedimentary rocks (part 2): applications of stress measurements”, Geoscience Canada, Vol. 23, pp. 135-153, 1996.
[31]Lin, W., Yamamoto, K., Ito, H., Masago, H., and Kawamura, Y., “Estimation of minimum principal stress from an extended leak-off test onboard the Chikyu drilling vessel and suggestions for future test procedures”, Scientific Drilling, Vol. 6, pp. 43-47, 2008.
[32]Zoback, M. D., Reservoir Geomechanics, Cambridge university press, New York, 2007.
[33]Jaeger, J. C. and Cook, N. W. G., Fundamentals of Rock Mechanics, Chapman and Hall, New York, third edition, 1979.
[34]Anderson, E. M., ”The dynamics of faulting”, Oliver and Boyd, Edinburgh, 1951.
[35]Suppe, J., “Present-day stress directions in western Taiwan inferred from borehole elongation”, Petrol. Geol. Taiwan, Vol. 21, pp. 1-12, 1985.
[36]Reinecker, J., Tingay, M. and Müller, B., “Borehole breakout analysis from four-arm caliper logs”, World Stress Map Project, pp. 1-5, 2003.
[37]Plumb, R. A. and S. H. Hickman, “Stress-induced borehole enlargement: a comparison between the four-arm dipmeter and the borehole televiewer in the Auburn geothermal well”, Journal of Geophysical Research, Vol. 90, pp. 5513-5521, 1985.
[38]Bell, J. S., “Investigating stress regimes in sedimentary basins using information from oil industry wireline logs and drilling records”, in Hurst, A., Lovell, M.A., and Morton, A.C., eds, Geological applications of wireline logs: Geological Society of London Special Publication, No. 48, pp. 305-325, 1990.
[39]Zajac, B. J. and Stock, J. M., 1992. “Using borehole breakouts to constrain the complete stress tensor: Results from the Sijan Deep Drilling Project and offshore Santa Maria Basin California”, Journal of Geophysical Research, Vol. 102, pp. 10083-10100.
[40]Finkbeiner, T., Zoback, M., Stump B. B., Flemings, P. B., “Stress, pore pressure, and dynamically constrained hydrocarbon columns in the South Eugene Island 330 Field, Gulf of Mexico”, American Association of Petroleum Geologists Bulletin, Vol. 85, pp. 1007-1031, 2001.
[41]White, A. and Hillis, R., “In-situ stress field and fault reactivation in the Mutineer and Exeter Fields, Australian North West Shelf”, Exploration Geophysics, Vol. 35, pp. 217-222, 2004.
[42]陳煥彩,「台灣北部地層及南部古亭坑層破裂壓力曲線之建立與應用」,石油鑽採工程,23,62-74頁,民國71年。
[43]溫文國,「鐵砧山B1注產氣井鑽井經過及事故檢討」,鑽採,1,95-118頁,民國88年。
[44]Yu, S. B., Chen, H. Y. and Kuo, L. C., “Velocity field of GPS station in the
Taiwan area”, Tectonophysics, Vol. 274, pp. 41-59, 1997.
[45]Hung, J. H., Ma, K. F., Wang, C. Y., H, Ito, Lin, W., and Yeh, E. C., “Structure
geology, physical properties, fault zone characteristics and stress state in scientific
drill holes of Taiwan Chelungpu Fault Drilling Project”, Tectonophysics, Vol. 466,
pp. 307–321, 2009.
[46]中央研究院地球科學研究所BATS(Broadband Array in Taiwan for Seismology)網(根據2002年全台地震資料),取自http://bats.earth.sinica.edu.tw/
[47]Lin, W., Yeh, E. C., Hung, J. H., Haimson, B., and Hirono, T, ”Localized rotation of principal stress around faults and fractures determined from borehole breakouts in hole B of the Taiwan Chelungpu-fault Drilling Project(TCDP)”, Tectonophysics, Vol. 482, pp. 82-91, 2010.
[48]Sperner, B., B. Müller, O. Heidbach, D. Delvaux, J. Reinecker and K. Fuchs, ”Tectonic stress in the Earth''s crust: Advances in the World Stress Map Project”, - In: Nieuwland D. (ed.): New Insights into Structural Interpretation and Modelling, Geol. Soc. Lond. Spec. Publ., Vol. 212, pp. 101-116, 2003.
[49]Byerlee, J. D., “Friction of rocks”, Pure and Applied Geophysics, Vol. 116, pp. 615-629, 1978.
[50]范振暉等人,石油基金「地下儲氣窖評估、開發及監控技術之研究」計畫,中國石油股份有限公司,民國92年。