| 研究生: |
黃亮維 Liang-Wei Huang |
|---|---|
| 論文名稱: |
三維可變形多面體之接觸運動分析 3D Contact Analysis of Multiple Deformable Polyhedrons in Motion |
| 指導教授: |
王仲宇
陳詩宏 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 多面體 、四面體元素 、接觸搜尋 、可變形體 |
| 外文關鍵詞: | polyhedron, tetrahedron, contact detection, deformable body |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出一可模擬任意形狀之可變形多面體塊體運動之模擬程式,此程式建模是由數個四面體元素網格所構成的。而四面體元素之間的接觸,則是由稜邊對稜邊、頂點對面兩種基本幾何接觸型態來作分類並進行有效且快速的分析。
本研究主要的分析流程是:在三維空間建立欲分析之幾何塊體形狀及依照需求之網格密度繪製好四面體元素網格,進行模擬之前須確認塊體材料性質,例如:各材料之楊氏係數、柏松比、材料密度、摩擦係數,以及該分析之外力歷時等。接下來先進來元素的分類,位於各塊體外表面的元素才有可能與其餘塊體之元素接觸,位於塊體內之元素就不可能有接觸;分類好欲詳細分析之元素後,透過本研究所撰寫之多層判斷式,在每個時刻預先作接觸可能之判斷,如果該接觸組合通過層層判斷式,接著就詳細計算該組合之正向、橫向入侵量,配合上接觸彈簧,得到作用於接觸點上之正向、橫向力向量,最後將其分配至構成接觸組合之質點上,完成一個時刻之接觸分析。
本研究之分析方法優勢在於,塊體的質量集中於節點,並且由接觸點位置分配力向量,可使不同四面體單元對應不同之材料模數,於受力後反應出應有之變形。而因為有了層層之判斷式,故越複雜、冗長之計算皆是判斷有可能接觸後才使用,通過這樣的篩選可以加速模擬分析的進行。最後透過一些例題之模擬分析,驗證所發展之程序的合理性。
This paper provides a new algorithm and a simulation code for 3D contact analysis of 3D deformable polyhedrons of any shape. Only the contact types of vertex-to-face and edge-to-edge are required for the eleven types of contact are theoretically possible between any two tetrahedron blocks.
Traditional contact of polyhedron blocks are way more difficult than contact of tetrahedron blocks. This study intends to reduce the complex level of polyhedron blocks contact by using tetrahedron meshes. Cutting polyhedron blocks into tetrahedron meshes, then using contact detection methods among tetrahedron blocks. With the advantages of Vector Finite Elements Methods, this computer code can simulate contact behavior among multiple deformable polyhedrons in motion. To speed up this program, this study provides a function to the tetrahedron meshes. After we establishing the simulation model, we use mesh analysis to sort the tetrahedrons are the ones inside the polyhedron body or the ones with possible contact. Then we use the closed surface informations to analyze the contact problems. Some example problems are studied to verify the accuracy and capabilities of this newly proposed simulation code.
[1] 許秀真。(1991)。多面塊體系統之運動模擬,國立中央大學土木工程學系。
[2] Cheng, Y. M. (1998). Advancements and improvement in discontinuous deformation analysis. Computers and Geotechnics, 22(2), 153-163.
[3] Cundall, P. A. (1988, June). Formulation of a three-dimensional distinct element model—Part I. A scheme to detect and represent contacts in a system composed of many polyhedral blocks. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 25, No. 3, pp. 107-116). Pergamon.
[4] Hart, R., Cundall, P. A., & Lemos, J. (1988, June). Formulation of a three-dimensional distinct element model—Part II. Mechanical calculations for motion and interaction of a system composed of many polyhedral blocks. In International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts (Vol. 25, No. 3, pp. 117-125). Pergamon.
[5] Shi, G. H. (1994, January). Modeling dynamic rock failure by discontinuous deformation analysis with simplex integrations. In 1st North American Rock Mechanics Symposium. American Rock Mechanics Association.
[6] 林鴻。(2015)。以四面體離散化多面體系統之接觸分析與模擬,國立中央大學土木工程學系。
[7] Gen-Hua, S. (1989). Discontinuous Deformation Analysis A New Numerical Model for the Static and Dynamics of Block Systems. PhD Dissertation, Dept. of Civil Engineering.
[8] Wang, S. P., & Nakamachi, E. (1997). The inside–outside contact search algorithm for finite element analysis. International Journal for Numerical Methods in Engineering, 40(19), 3665-3685.
[9] Shi, G. H. (2006). Producing joint polygons, cutting joint blocks and finding key blocks for general free surfaces. 岩石力學與工程學報, 25(11), 2161-2170.
[10] 李海楓, 張國新, 石根華, & 彭校初. (2010). 流形切割及有限元網格覆蓋下的三維流形單元生成. 岩石力學與工程學報, 29(4), 731-742.
[11] Kikuchi, N., & Oden, J. T. (1988). Contact problems in elasticity: a study of variational inequalities and finite element methods(Vol. 8). siam.
[12] Wriggers, P. (1995). Finite element algorithms for contact problems. Archives of Computational Methods in Engineering, 2(4), 1-49.
[13] Hongwu, Z., Wanxie, Z., & Yuanxian, G. (1998). A combined parametric quadratic programming and iteration method for 3-D elastic-plastic frictional contact problem analysis. Computer methods in applied mechanics and engineering, 155(3-4), 307-324.
[14] Feng, Z. Q. (1998). Some test examples of 2D and 3D contact problems involving Coulomb friction and large slip. Mathematical and computer modelling, 28(4), 469-478.
[15] Zhao, L., Liu, Z., & Li, T. (2014). Mixed finite element method for static and dynamic contact problems with friction and initial gaps. Mathematical Problems in Engineering, 2014.
[16] Swegle, J. W. (1992). Search algorithm. Memo to Distribution, Sandia National Laboratories, Albuquerque, NM.
[17] Hu, D., Long, T., Xiao, Y., Han, X., & Gu, Y. (2014). Fluid–structure interaction analysis by coupled FE–SPH model based on a novel searching algorithm. Computer Methods in Applied Mechanics and Engineering, 276, 266-286.
[18] Keneti, A. R., Jafari, A., & Wu, J. H. (2008). A new algorithm to identify contact patterns between convex blocks for three-dimensional discontinuous deformation analysis. Computers and Geotechnics, 35(5), 746-759.
[19] Laursen, T. A. (2013). Computational contact and impact mechanics: fundamentals of modeling interfacial phenomena in nonlinear finite element analysis. Springer Science & Business Media.
[20] Puso, M. A., & Laursen, T. A. (2004). A mortar segment-to-segment contact method for large deformation solid mechanics. Computer methods in applied mechanics and engineering, 193(6-8), 601-629.
[21] 丁承先,王仲宇,吳東岳,王仁佐,莊清鏘,V-5 研究組(2007),運動解析與向量式有限元(2.0版),中央大學工學院,橋梁工程研究中心。
[22] 雷正保,楊應龍,鍾志華(1999),結構碰撞分析中的動態顯式有限元方法及應用,長沙交通學院汽車系,湖南大學機械與汽車工程學院。
[23] 陳曉敏。(2014)。卵形顆粒法向與切向接觸之等效線性彈簧值之推導與驗證,國立中央大學土木工程學系。
[24] Ting, E. C., Shih, C., & Wang, Y. K. (2004). Fundamentals of a vector form intrinsic finite element: Part I. Basic procedure and a plane frame element. Journal of Mechanics, 20(2), 113-122.
[25] Ting, E. C., Shih, C., & Wang, Y. K. (2004). Fundamentals of a vector form intrinsic finite element: Part II. plane solid elements. Journal of Mechanics, 20(2), 123-132.
[26] Shih, C., Wang, Y. K., & Ting, E. C. (2004). Fundamentals of a vector form intrinsic finite element: Part III. Convected material frame and examples. Journal of Mechanics, 20(2), 133-143.