| 研究生: |
吳偉任 Wei-Jen Wu |
|---|---|
| 論文名稱: |
組織工程用冷凍成型積層製造之固態水支撐結構生成研究 Generation Process of Support Structure by Water Phase Change for Frozen-Form Additive Manufacturing of Tissue Engineering |
| 指導教授: |
廖昭仰
Chao-Yaug Liao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 109 |
| 中文關鍵詞: | 組織工程支架 、冷凍成型積層製造 、噴霧閥 、支撐結構 |
| 外文關鍵詞: | tissue engineering scaffold, frozen-form additive manufacturing, spray valve, support structure |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
積層製造技術具有快速客製化優勢,適合製作多孔性且形狀複雜的組織工程支架,而本研究選用冷凍成型積層製造製作支架。然而,使用冷凍成型積層製造製作複雜外型且具有多孔結構的支架相當困難,因為難以完全去除支撐結構。本研究將開發一種可快速生成且可完全去除支撐結構的「固態水支撐製程」,用以解決上述困難。
首先,本研究改良冷凍成型積層製造的低溫裝置及添加環境控制模組,提升冷凍槽的冷凍能力,以提供製作大尺寸支架及快速生成支撐結構之能力。新的低溫裝置是將銅管與擋水鋼板結合,提高熱傳導效率。改良後的結果顯示,工作平台最低溫由原本-30°C可降至-50°C。從室溫到達-30°C的時間,由150分鐘降為20分鐘。另外,藉由水的相變化得以快速生成支撐結構,液體水經由噴霧閥噴灑在工作平台上,冷凍成固態冰,進而成為支撐結構。支架製作完成後,再利用氣化將支撐結構完全去除。最後,本研究根據文獻及熱像儀分析,決定使用10wt%乙醇水溶液作為支撐材料,並可在35秒內沉積75 55mm²的工作範圍。
為了驗證固態水支撐製程之功效,本研究使用PU/PEO為支架材料,製作圓柱支架。由細胞活性實驗的四唑鹽比色法得知,細胞在使用固態水支撐製作的支架內,經過24小時可生長1.8倍的數量。從動態機械分析得知,使用固態水支撐製作的支架,因膨潤效應導致剛性強度降低,但對於支架回彈能力影響不大。經實驗觀察,將支架擠壓後2秒內可回彈回原來的形狀。而使用固態水支撐製作的支架會產生微奈米的網狀結構,藉由核磁共振光譜法得知網狀結構為支架本身材料。最後,使用固態水支撐製作大型雙倒T通孔支架與Y形管支架。由上述證實本研究之方法可製作大尺寸複雜外型且具有多孔結構的組織工程支架。
Additive manufacturing technology has the advantage in rapid customization, and it is suitable for the production of tissue engineering scaffolds with high porosity and complex shape. This study is focusing on frozen-form additive manufacturing. However, it was difficult to produce the scaffolds with complex shape and porous structure, because its support structure could not be removed completely. This study developed a support process to rapidly generate the support structure and was removed completely.
Firs, This study improved the uniform cryogenic device module and added environmental control module into frozen-form additive manufacturing to enhance the freezing capacity and produce large complex shape scaffolds and rapidly generate support structure. The retaining steel and the copper tube were combined to become the cooling enclosure, which reduced energy loss. The lowest temperature of the working plate became -50°C from -30°C, and the time for the temperature to reach -30°C was reduced from 150 minutes to 20 minutes. Additionally, the support structure was generated by water phase change. Liquid was sprayed on the working plate through the spray valve, and it was frozen into solid to generate the support structure. Finally, the support structure was completely removed by vaporization. According to the literatures and the result of thermal imaging camera, 10wt% ethanol solution was selected as the support material and deposited onto 75 55mm area in 35 seconds.
In order to verify the effectiveness of the support process, PU/PEO was used as the scaffold material to produce cylindrical scaffolds. The cell viability testing was performed using MTT-assay. The results showed that the number of cells grew 1.8 times in 24 hours. The storage module of the scaffolds was lower with the support process, because of swelling effect, but it had a little effect on the elastic recovery. In the experimental observation, the scaffolds restored origin shape in 2 sec after extrusion. Furthermore, the micro/nano network structure of the scaffold was generated between strand and strand after the support process. The micro/nano network structure was detected by nuclear magnetic resonance spectroscopy, and the results showed that it was the material of the scaffold. Finally, the dual inverted T-type inner channels scaffold and the Y-type scaffold were produced in this study. From the above, this study verity the approach to produce large complex shape and porous structure tissue engineering scaffolds.
[1] 楊志明,組織工程,九州圖書,民國94年。
[2] Y. S. Nam and T. G. Park, “Porous Biodegradable Polymeric Scaffolds Prepared by Thermally Induced Phase Separation”, Journal of Biomedical Materials Research. Part A, Vol. 47, pp.8-17, 1999.
[3] A. G. Mikos, G. Sarakinos, S. M. Leite, J. P. Vacant and R. Langer, “Laminated Three-dimensional Biodegradable Foams for Use in Tissue Engineering”, Biomaterials, Vol. 14, pp.323-330, 1993.
[4] D. C. Sin, X. Miao, G. Liu, F. Wei, G. Chadwick, C. Yan and T. Friis, “Polyurethane (PU) Scaffolds Prepared by Solvent Casting/Particulate Leaching (SCPL) Combined with Centrifugation”, Materials Science and Engineering: C, Vol. 30, pp.78-85, 2010.
[5] 中國機械工程學會,3D列印 列印未來—從虛擬到實現,佳魁文化,民國102年。
[6] X. Yan and P. Gu, “A Review of Rapid Prototyping Technologies and Systems”, Computer-Aided Design, Vol. 28, pp.307-318, 1996.
[7] R. P. Lanza, R. Langer and J. Vacanti, Principles of Tissue Engineering, Edition, Academic Press, 2000.
[8] D. W. Hutmacher, T. Schantz, I. Zein, K. W. Ng, S. H. Teoh and K. C. Tan, “Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling”, Journal of Biomedical Materials Research Part A, Vol. 55, pp.203-216, 2001.
[9] I. Zein, D. W. Hutmacher, K. C. Tan and S. H. Teoh, “Fused Deposition Modeling of Novel Scaffold Architectures for Tissue Engineering Applications”, Biomaterials, Vol. 23, pp.1169-1185, 2002.
[10] S. H. Hsu, H. J. Yen, C. S. Tseng, C. S. Cheng and C. L. Tsai, “Evaluation of The Growth of Chondrocytes and Osteoblasts Seeded into Precision Scaffolds Fabricated by Fused Deposition Manufacturing”, Journal of Biomedical Materials Research, Vol. 80B, pp.519-527, 2007.
[11] H. J. Yen, S. H. Hsu, C. S. Tseng, J. P. Huang and C. L. Tsai, “Fabrication of Precision Scaffolds Using Liquid-frozen Deposition Manufacturing for Cartilage Tissue Engineering”, Tissue Engineering Part A, Vol. 15, pp.965-975, 2009.
[12] Z. Xiong, Y. Yan, S. Wang, R. Zhang and C. Zhang, “Fabrication of Porous Scaffolds for Bone Tissue Engineering via Low-temperature Deposition”, Scripta Materialia, Vol. 46, pp.771-776, 2002.
[13] L. Liu, Z. Xiong, Y. Yan, R. Zhang, X. Wang and L. Jin, “Multinozzle Low-temperature Deposition System for Construction of Gradient Tissue Engineering Scaffolds”, Journal of Biomedical Materials Research, Vol. 88B, pp.254-263, 2009.
[14] 黃仁波,「以冷凍式快速原型法製作組織工程支架」,國立中央大學,碩士論文,民國94年。
[15] 陳彥霖,「組織工程用三維支架之電腦輔助製程設計」,國立中央大學,碩士論文,民國96年。
[16] 蘇彥安,「組織工程用三維支架製程改善之研究」,國立中央大學,碩士論文,民國98年。
[17] C. B. Pham, K. F. Leong, T. C. Lim and K. S. Chian, “Rapid Freeze Prototyping Technique in Bio-plotters for Tissue Scaffold Fabrication”, Rapid Prototyping Journal, Vol. 14, pp.246-253, 2008.
[18] G. H. Kim, S. H. Ahn, H. Yoon, Y. Y. Kim and W. Chun, “A Cryogenic Direct-plotting System for Fabrication of 3D Collagen Scaffolds for Tissue Engineering”, Journal of Materials Chemistry, Vol. 19, pp.8817-8823, 2009.
[19] G. H. Kim, S. H. Ahn, Y. Y. Kim, Y. S. Cho and W. Chun, “Coaxial Structured Collagen-alginate Scaffolds: Fabrication, Physical Properties, and Biomedical Application for Skin Tissue Regeneration”, Journal of Materials Chemistry, Vol. 21, pp.6165-6172, 2011.
[20] N. D. Doiphode, T. Huang, M. C. Leu, M. N. Rahaman and D. E. Day, “Freeze Extrusion Fabrication of 13–93 Bioactive Glass Scaffolds for Bone Repair”, Journal of Materials Science: Materials in Medicine, Vol. 22, pp.515-523, 2011.
[21] W. Zhang, M. C. Leu, Z. Ji and Y. Yan, “Rapid Freezing Prototyping with Water”, Materials & Design, Vol. 20, pp.139-145, 1999.
[22] Q. Liu and M. C. Leu, “Finite Element Analysis of Solidification in Rapid Freeze Prototyping”, Journal of Manufacturing Science and Engineering, Vol. 129, pp.810-820, 2007.
[23] F. D. Bryant and M. C. Leu, “Modeling and experimental results of concentration with support material in rapid freeze prototyping”, Rapid Prototyping Journal, Vol. 15, pp.317-324, 2009.
[24] C. Y. Liu, Y. Li, L. Zhang, S. Mi, Y. Y. Xu and W. Sun, “Development of A Novel Low-temperature Deposition Machine Using Screw Extrusion to Fabricate Poly(L-lactide-co-glycolide) Acid Scaffolds”, Journal of Engineering in Medicine, Vol. 228, pp.593-606, 2014.
[25] M. S. Laia, D. R. Jorge and O. Neri, “Water-Based Robotic Fabrication: Large-Scale Additive Manufacturing of Functionally Graded Hydrogel Composites via Multichamber Extrusion”, 3D Printing and Additive Manufacturing, Vol. 1, pp.141-151, 2014.
[26] J. S. Lee, J. M. Hong, J. W. Jung, J. H. Shim, J. H. Oh and D. W. Cho, “3D Printing of Composite Tissue with Complex Shape Applied to Ear Regeneration”, Biofabrication, Vol. 6, pp.103-115, 2014.
[27] 林研聖,「冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究」,國立中央大學,碩士論文,民國104年。
[28] 杜方傑,「組織工程用冷凍成型製造系統之自動化製作流程開發」,國立中央大學,碩士論文,民國104年。
[29] C. H. Lin, J. M. Su and S. H. Hsu, “Evaluation of Type II Collagen Scaffolds Reinforced by Poly(ε-Caprolactone) as Tissue-engineered Trachea”, Tissue Engineering Part C: Methods, Vol. 14, pp.69-77, 2008.
[30] J. H. Park, J. M. Hong, Y. M. Ju, J. W. Jung, H. W. Kang, S. J. Lee, J. J. Yoo, S. W. Kim, S. H. Kim and D. W. Cho, “A Novel Tissue-engineered Trachea with A Mechanical Behavior Similar to Native Trachea”, Biomaterials, Vol. 62, pp.106-115, 2015.
[31] R. J. Morrison, S. J. Hollister, M. F. Niedner, M. G. Mahani, A. H. Park, D. K. Mehta, R. G. Ohye and G. E. Green, “Mitigation of Tracheobronchomalacia with 3D-printed Personalized Medical Devices in Pediatric Patients”, Science Translational Medicine, Vol. 7, pp. 285-296, 2015.
[32] G. H. Wu and S. H. Hsu, “Review: Polymeric-Based 3D Printing for Tissue Engineering”, Journal of Medical and Biological Engineering, Vol. 35, pp.285-292, 2015.
[33] B. Dhariwala, E. Hunt and T. Boland, “Rapid Prototyping of Tissue-engineering Constructs, Using Photopolymerizable Hydrogels and Stereolithography”, Tissue Engineering, Vol. 10, pp.1316-1322, 2004.
[34] C. Shuai, Z. Mao, H. Lu, Y. Nie, H. Hu and S. Peng, “Fabrication of Porous Polyvinyl Alcohol Scaffold for Bone Tissue Engineering Via Selective Laser Sintering”, Biofabrication, Vol. 5, 015014, 2013.
[35] R. P. Chhabra and J. F. Richardson, Non-Newtonian and Applied Rheology: Engineering Application, Edition, ELSEVIER, 2008.
[36] D. V. Boger, “Demonstration or Upper and Lower Newtonian Fluid Behavior in a Pseudoplastic Fluid”, Nature, Vol. 265, pp.126-128, 1977.
[37] J. Y. Kim, J. K. Park, S. K. Hahn, T. H. Kwon and D. W. Cho, “Development of The Flow Befavior Model for 3D Scaffold Fabrication in The Polymer Deposition Process by A Heating Method”, Journal of Micromechanics and Microengineering, Vol. 19, 105003, 2009.
[38] K. C. Hung, C. S. Tseng and S. H. Hsu, “Synthesis and 3D Priting of Biodegradable Polyurethane Elastomer by a Water-based Process for Cartilage Tissue Engineering Applications”, Advanve Healthcare Material, Vol. 3, pp1578-1587, 2014.
[39] S. H. Hsu, K. C. Hung, Y. Y. Lin, C. H. Su, H. Y. Yeh, U. S. Jeng, C. Y. Lu, S. A. Dai, W. E. Fu and J. C. Lin, “Water-based Synthesis and Processing of Novel Biodegradable Elastomers for Medical Applications”, Journal of Materials Chemistry B, Vol. 2, pp.5083-5092, 2014.
[40] D. L. Teagarden and D. S. Baker, “Practical Aspects of Lyophilization Using Non-aqueous Co-solvent Systems”, European Journal of Pharmaceutical Sciences, Vol. 15, pp.115-133, 2002.
[41] N. P. Cheremisinoff, Industrial Solvents Handbook, Edition, Marcel Dekker, 2003.
[42] K. Takaizumi, “A Curious Phenomenon in The Freezing-Thawing Process of Aqueous Ethanol Solution”, Journal of Solution Chemistry, Vol. 34, pp.597-612, 2005.
[43] H. Kumano, T. Asaoka, A. Saito and S. Okawa, “Study on Latent Heat of Fusion of Ice in Aqueous Solutions”, International Journal of Refrigeration, Vol. 30, pp.267-273, 2007.
[44] H. Seager, C. B. Taskis, M. Syrop and T. J. Tee, “Structure of Products Prepared by Freeze-drying Solutions Containing Organic Solvents”, PDA Journal of Pharmaceutical Science and Technology, Vol. 39, pp.161-179, 1985.
[45] 曾郁文,「雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究」,國立中央大學,碩士論文,民國102年。