| 研究生: |
紀凱獻 Kai-Hsien CHi |
|---|---|
| 論文名稱: |
戴奧辛於煙道氣及大氣中之氣固相分布特性 Evaluation of PCDD/F Congener Partitioning between Vapor/Solid Phases in Flue Gases and Ambient Air |
| 指導教授: |
張木彬
Moo-Been Chang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 93 |
| 語文別: | 英文 |
| 論文頁數: | 215 |
| 中文關鍵詞: | 戴奧辛 、呋喃 、焚化爐 、電弧爐煉鋼廠 、集塵灰回收廠 、排放量 、控制效率 、推估模式 |
| 外文關鍵詞: | electric arc furnace, waelz plant, emission, removal efficiency, prediction model, incinerator, Dioxin, furan |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
戴奧辛自污染源排放後係以氣相及固相之方式分布於大氣環境,因此系統性地對污染源煙道排氣及大氣環境中戴奧辛的氣固相分布特性進行深入之研究確有其必要性。就污染物控制的角度審視這個問題,若無法實際釐清氣固相戴奧辛之生成途徑以及控制機制,現場之操作單位或政策主管機關將無法有效控制污染排放並擬定適當之管制策略。本論文嘗試探討煙道氣中戴奧辛之氣固相分布,以釐清戴奧辛各物種於污染源中之去除機制,並瞭解污染源周界大氣中戴奧辛污染物之氣固相分布特性,以釐清大氣環境中戴奧辛之傳輸行為及氣固相轉換特性,藉以評估國內現行之空氣污染控制技術對氣固相戴奧辛物種去除效率之差異,並藉由實廠採樣數據初步建立戴奧辛各物種於煙道氣中之氣固分布推估模式。本篇論文針對國內六座戴奧辛排放源包括二座都市垃圾焚化廠(MWI-1及MWI-2)、二座事業廢棄物焚化廠(IWI-1及IWI-2)、電弧爐煉鋼廠(EAF)以及電弧爐集塵灰資源回收廠(Waelz plant)進行氣固相戴奧辛煙道採樣及分析工作,研究結果指出,各污染源煙道氣中氣固相戴奧辛之去除效率亦隨其使用之APCDs不同產生變化,進而影響戴奧辛於煙道氣中之氣固相分布。當煙道氣分別經過旋風集塵器(CY)及袋濾式集塵器(BF)後,煙道氣中70%以上之戴奧辛分布於氣相,而活性碳注入技術(ACI)搭配BF其對煙道氣中固相戴奧辛之去除效率高於氣相,使得煙道氣中之氣相戴奧辛由70%上升至90%以上,另外使用選擇性還原觸媒反應器(SCR)則可有效將煙道氣中之氣相戴奧辛予以破壞去除。由於污染源控制設備對戴奧辛去除機制之不同,將改變煙道氣流中戴奧辛之氣固分布特性進而對整廠之戴奧辛排放量造成影響,使用SCR作為戴奧辛控制設備之MWI-2其整廠戴奧辛排放量僅為使用ACI之MWI-1的三分之二,而都市垃圾焚化廠之戴奧辛排放量95%以上皆分布於飛灰及反應灰中,這些含有戴奧辛污染物固體廢棄物可能成為未來環境污染問題的隱憂。此外使用傳統空氣污染控制設備(CY及BF)的戴奧辛排放源,由於其無法有效控制氣相戴奧辛之排放,其戴奧辛排放量將近47%至66%由煙囪排出,其對鄰近地區環境生態的影響值得重視。污染源煙道排氣及周界大氣中之氣固相戴奧辛樣品採樣結果亦指出MWI-1周界大氣中其戴奧辛物種將近80%以上分布於固相,而EAF周界大氣中戴奧辛物種有35%至55%分布於氣相。造成上述差異的原因除了受污染源與大氣測站的距離遠近、大氣中懸浮微粒濃度高低影響之外,污染源所排放出之氣固相戴奧辛濃度分布亦造成相當程度的影響,由於EAF並未配置可有效控制氣相戴奧辛排放之控制設備,進而造成鄰近地區大氣中戴奧辛物種分布於氣相之比率較MWI-1周界地區高。此外研究結果亦指出大氣溫度下降100C時大氣中戴奧辛物種分布於固相之比率將會增加20%,顯示環境溫度之變化對戴奧辛氣固相分布特性之影響值得注意。MWI-1實廠煙道氣採樣結果指出煙道氣溫度之改變將影響氣固相戴奧辛之去除效率,兩者之間雖不具線性相關,但以ACI+BF技術控制氣固相戴奧辛亦存在一最佳操作溫度(1600C)。而本研究所建立之氣相戴奧辛吸附載體測試系統(PAS)分析結果指出當氣流溫度為1500C時,約50%之氣相戴奧辛轉移至固相,當氣流溫度上升至2000C時戴奧辛由氣相轉移至固相之比率則下降至20%,此外該測試結果亦顯示當煙道氣流溫度介於de novo再合成之溫度窗時(2500C),吸附載體上將會有戴奧辛再生成的現象發生,並揮發至氣流中。
綜觀來說,戴奧辛於煙道氣中之氣固分特性受粒狀物濃度、環境溫度以及空氣污染控制設備形式影響甚巨,故整合實廠採樣結果以及參考相關文獻本論文初步建立戴奧辛污染排放源煙道氣中戴奧辛氣固相之推估模式log (Cv/Cs) =m logP0L+log (c/PM)。該模式可推估煙道氣於高溫爐體出口以及氣流通過旋風集塵器、袋濾式集塵器、乾/濕式靜電集塵器、固定式活性碳吸附塔、活性碳注入以及觸媒反應器後戴奧辛於氣固相之分布係數。經由模式推估結果與實廠採樣分析數據之比對,亦發現其推估結果尚稱理想,但若是煙道氣中粒狀物濃度過高時,其氣固相之分布係數推估結果將明顯高估,此外若煙道氣溫度介於de novo再合成之溫度窗(2500C~4500C)時其氣固相之分布係數推估結果將明顯低估。綜觀來說,此推估模式可初步作為國內探討污染源煙道排氣中氣固相戴奧辛分布特性之參考。
Around 60 to 80% of the seventeen 2,3,7,8-substituted PCDD/F concentrations in the atmosphere are bounded to particles. Partitioning of PCDD/F congeners between vapor and solid phases in flue gas of the PCDD/F emission sources and ambient air in Taiwan are evaluated via stack sampling and analysis in this study. This dissertation emphasizes the understanding of the partitioning and removal efficiency of PCDD/Fs of flue gas at two municipal wastes incinerator (MWI-1 and MWI-2), two industrial wastes incinerators (IWI-1 and IWI-2), one electric arc furnace (EAF) and one Waelz plant equipped with different types air pollution control devices (APCDs). The results indicate that the vapor-phase PCDD/Fs can be emitted from the stack by penetrating through cyclone (CY), bag filter (BF) and electrostatic precipitator (EP) if no effective control device is applied. Vapor-phase PCDD/Fs can be removed by various means including adsorption with carbon-based adsorbents, and catalytic destruction. Compared to the activated carbon injection technology which only transfers vapor-phase PCDD/Fs to the fly ash and would make ash disposal even more complicated, selective catalytic reduction (SCR) system can destroy PCDD/Fs and serves as a better control technology for removing PCDD/Fs from gas streams. The results of the emission from several facilities demonstrate that 99.7% and 0.3% of PCDD/F output in MWI-2 is discharged with EP ash (98.3 µg-TEQ/ ton waste) and stack gas, respectively. SCR system removes and destroys most of the PCDD/F congeners. The emission rate of MWI-1 is much higher than that of MWI-2 caused by the PCDD/F removal efficiencies achieved with different APCDs adopted, resulting in different PCDD/F removal mechanisms. It is noted that total PCDD/F discharge in Waelz plant is 840.3 µg-TEQ/ton EAF-dust, among which 33.3% is discharged with fly ash and needs to effectively reduce PCDD/F formation and install better PCDD/F control devices for the perspective of total environmental management. The results obtained from the ambient air sampling indicate that the mean PCDD/F concentration measured in the vicinity area of the MWI (56~348 fg-I-TEQ/m3) and EAF (61~312 fg-I-TEQ/m3) investigated are lower than the ambient air standard proposed in Japan (600 fg-I-TEQ/m3). The results obtained on vapor/solid partitioning of PCDD/Fs in ambient air indicate that the solid-phase portion accounts for more than 80% of the total concentration in the vicinity area of MWI investigated. Besides, the vapor-phase PCDD/Fs account for 35% to 55% in the vicinity area of EAF investigated. In addition, the temperature and the distance between emission source and sampling site would also affect the partitioning of PCDD/Fs between vapor and solid phases. The results of MWI-1 flue gas sampling indicate that there is optimal operating temperature for PCDD/F removal with ACI. In addition, the results of pilot-scale adsorption system (PAS) experimentation indicate that about 50% and 20% vapor-phase PCDD/Fs transferred to solid phase at Group 1 (1500C) and Group 2 (2000C), respectively. As the temperature is increased to 2500C, de novo synthesis significantly affects the partitioning of PCDD/Fs between vapor/solid phases.
Based on results of the partition of vapor/solid-phase PCDD/F achieved with the APCDs applied upstream and the particulate matter concentration in flue gas, this dissertation applies the equation log(Cv/Cs) =m logP0L+log(c/PM) for predicting vapor/solid-phase PCDD/F partition in flue gases downstream various APCDs including CY, EP, BF, wet electrostatic precipitator (WEP), fixed activated carbon bed (FCB), ACI and SCR. As the PM concentration is over 20,000 mg/Nm3 or temperature in flue gas is within the temperature window of de novo synthesis, the log(Cv/Cs) of observed data is significantly higher or lower than the result predicted, respectively. Accordingly, the equation can be used to predict the partitioning of PCDD/Fs between vapor and solid phases in flue gas if de novo synthesis is not significant.
References
Addink, R., Drijver, D. J. and Olie, K. Formation of Ppolychlorinated Dibenzo-p-dioxins/dibenzofurans in the Carbon or Fly Ash System. Chemosphere 23(8-1):1205-1211 (1991).
Addink, R. and Olie, K. Mechanisms of Formation and Destruction of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Heterogeneous Systems. Environ. Sci. Technol., 29, 1425-1435 (1995).
Addink, R., Cnubben, P. A. J. P., and Olie, K. Formation of Polychlorinated Dibenzo-p-dioxins/Dibenzofurans on Fly Ash from Precursors and Carbon Model Compounds. Carbon. 33(10), 1463-1471 (1995).
Addink, R., Espouteille, F. and Altwicker, E. R. Role of Inorganic Chlorine in the Formation of Polychlorinated Dibenzo-p-dioxins/dibenzofurans from Residual Carbon on Incinerator Fly Ash. Environ. Sci. Technol., 32, 3356-3359 (1998).
Ahlborg, V. G., Becking, G. C. and Birnbaum, L. S. Toxic Equivalency Factors for Dioxin-like PCBs. Chemosphere, 28(6), 1049-1067 (1994).
Altwicker, e. R., Xun, Y. and Milligan, M. S. Dioxin Formation over Fly Ash: Oxygen Dependence, Temperature Dependence and Phase Distribution. Organohalogen Compounds, 20, 381–384 (1994).
Alonso, F., Beletskaya, I. P. and Yus, M. Metal-mediated Reductive Hydrodehalogenation of Organic Halides. Chemical Reviews, 102, 4009-4092 (2002).
Anthony, E. J., Jia, L. and Granatstein, D. L. Dioxin and Furan Formation in FBC Boilers. Environ. Sci. Technol., 35, 3002-3007(2001).
Arion, A., Florimond, P., Berho, F., Marlière, E. and Louër, P. L. Investigation of Dioxin Formation Mechanisms under Sintering Conditions by Use of Pilot Pot. Organohalogen Compounds, 56, 127-131 (2002).
Benfenati, E., Pastorelli, R., Castelli, M. G., Fanelli, R., Carminati, J. A., Farneti, A. and Lodi, M. Studies on the Tetrachlorodibenzo-p-dioxins (TCDD) and Tetrachlorodibenzofurans (TCDF) Emitted from an Urban Incinerator. Chemosphere, 15, 557-561 (1986).
Bidleman, T. F., Billings, W. N. and Foreman, W. T. Vapor-particle Partitioning of Semi-volatile Organic Compounds: Estimates from Field Collections. Environ. Sci. Technol., 20, 1038-1043 (1986).
Blumbach, J. and Nethe, L. Sorbalit - A New Economic Approach Reducing Mercury and Dioxin Emissions. Proceedings of 85th Annual Air and Waste Management Association Meeting, Kansas City, 92-41. 09, 21-26 (1992).
Born, J. G. P., Mulder, P., Louw, R. Fly Ash Mediated Reactions of Phenol and Monochlorophenols: Oxychlorination, Deep Oxidation, and Condensation. Environ. Sci. Technol., 27, 1849-1863 (1993).
Bonte, J. L., Fritsky, K. J., Plinke, M. A. and Wilken, M. Catalytic Destruction of PCDD/F in a Fabric Filter: Experience at a Municipal Waste Incinerator in Belgium. Waste Management, 22(4), 421-426 (2002).
Brubaker, W. W. and Hites, R. A. Polychlorinated dibenzo-p-dioxins and dibenzofurans: Gas-phase Hydroxy Radical Reactions and Related Atmospheric Removal. Environ. Sci. Technol., 31, 1805-1810 (1997).
Bruce, K. R., Beach, L. O. and Gullet, R. K. The Role of Gas-phase Cl in the Formation of PCDD/PCDF during Waste Combustion. Waste Management, 11, 97-102 (1991).
Buekens, A. and Huang, H. Comparative Evaluation of Techniques for Controlling the Formation and Emission of Chlorinated Dioxin/ Furans in Municipal Waste Incineration. Journal of Hazardous Materials 62, 1-33 (1998).
Cavallaro, A., Luciani, L., Ceroni, G., Rocchi, I., Invernizzi, G. and Gorni, A. Summary of Results of PCDD Analyses from Incinerator Effluents. Chemosphere, 11, 859-886 (1982).
Chang, M. B. and Lin, J. J. Memory Effect on the Dioxin Emissions from Municipal Waste Incinerator in Taiwan. Chemosphere, 45, 1151-1157 (2001).
Chang, M. B., Lin, J. J., and Chang, S. H.. Characterization of Dioxin Emissions from Two Municipal Solid Waste Incinerators in Taiwan. Atmospheric Environment, 36, 279-286 (2002).
Chang, M. B., Weng, Y. M., Lee, T. Y., Chen, Y. W., Chang, S. H., and Chi, K. H. Sampling and Analysis of Ambient Dioxins in Northern Taiwan. Chemosphere, 51(10), 1103-1110 (2003).
Chang, M.B., Chi, K. H., Chang, S.H., Chen, Y.W. Measurement of PCDD/F Congener Distributions in MWI Stack Gas and Ambient Air in Northern Taiwan. Atmospheric Environment 38, 2535-2544 (2004).
Chen, C. M. The Emission Inventory of PCDD/PCDF in Taiwan. Chemosphere, 54, 1413-1430 (2004).
Chi, K. H. and Chang, M. B. Evaluation of PCDD/F Congener Partition in Vapor/Solid Phases of Waste Incinerator Flue Gases. Environ. Sci. Technol., (minor revision, 2005).
Clement, R. E., Tosine, H. M., Osborne, J., Ozvacic, V. and Wong, G. Levels of Chlorinated Organics in a Municipal Incinerator. Chlorinated Dioxins and Dibenzofurans in the Total Environment II. Butterworth Publishers, Boston, MA., 489-514 (1985).
Correa, O., Rifai, H., Raun, L., Suarez, M. and Koenig L. Concentrations and Vapor–particle Partitioning of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Ambient Air of Houston, TX. Atmospheric Environment, 38, 6687–6699 (2004).
Dickson, C. L., Lenolr, D. and Hutzinger, O. Quantitative Comparison of De Novo and Precursor Formation of Polychlorinated Dibenzo-p-dioxions under Simulated Municipal Solid Waste Incineration Post Combustion Conditions. Environ. Sci. Technol., 26, 1822-1828 (1992).
Donnelly, J.R. Waste Incineration Sources: Refuse. In: Buonicore, A.J., Davis, W.T., eds, Air Pollution Engineering Manual. Air and Waste Management Association. New York, NY. 263-275 (1992).
Eitzer, B. D. and Hites, R. A. Vapor Pressures of Chlorinated Dioxins and Furans. Environ. Sci. Technol., 22, 1362-1364 (1988).
Eitzer, B. D., Hites, R. A., Vapor Pressures of Chlorinated Dioxins and Dibenzofurans. Environ. Sci. Technol., 32, 2804–2806 (1998).
Eklund, G, Pedersen, J.R. and Stromberg, B. Methane, Hydrogen Chloride and Oxygen from a Wide Range of Chlorinated Organic Species in the Temperature Range 4000C-9500C. Chemosphere, 17 (3): 575-586 (1988).
European Union On-Line. European Dioxin Inventory-Result. 040207, http:// europa.eu.int/ comm. /environment /dioxin / stage1. (2001).
Finzio, A., Mackay, D., Bidleman, T. and Harner, T. Octanol–air Partition Coefficient as a Predictor of Partitioning of Semi-volatile Organic Chemicals to Aerosols. Atmospheric Environment, 31, 2289–2296 (1997).
Fisher, R., Anderson, D. R., Wilson, D. T., Aries E., Hemfrey, D. and Fray, T. A. T. Effect of Chloride on the Formation of PCDD/Fs and WHO-12 PCBs in Iron Ore Sintering. Organohalogen Compounds, 66, 1132-1139 (2004).
Govers, H. A. J. and Krop, H. B. Partition Constants of Chlorinated Dibenzofurans and Dibenzo-p-dioxins. Chemosphere, 37, 2139–2152 (1998).
Gotoh, Y. and Nakamura, Y. Japanese Source Inventory, Focusing on the Emission Reduction Measures in the Manufacturing Industries Sector. Organohalogen Compounds, 41, 477-480 (1999).
Griffin, R. G. A New Theory of Dioxin Formation in Municipal Solid Waste Combustion. Chemosphere, 15, 1987-1990 (1986).
Green, N. J. R., Lohmann L. and Jones, K. C. Seasonal Anthropogenic, Air Mass, and Meteorological Influences on the Atmospheric Concentrations of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans (PCDD/Fs): Evidence for the Importance of Diffuse Combustion Sources. Environ. Sci. Technol., 33, 2864-2871 (1996).
Gullett, B., Bruce, K. and Beach, L. Mechanistic Steps in the Production of PCDD and PCDF during Waste Combustion. Chemosphere 25(7-10):1387-1392 (1992a).
Gullett, B. K., Bruce, K. R. and Beach, L. O. Effect of Sulfur Dioxide on the Formation Mechanism of Polychlorinated Dibenzodioxin and Dibenzofuran in Municipal Waste Combustors. Enviorn. Sci. Technol., 26, 1938-1943 (1992b).
Gullett, B. K. and Lemieux, P. M. Role of Combustion and Sorbent Parameters in Prevention of Polychlorinated Dibenzo-p-dioxin and Polychlorinated Dibenzofuran Formation during Waste Combustion. Environ. Sci. Technol., 28(1), 107-118 (1994).
Hagenmaier, H., Kraft, M., Jager, W., Mayer, U., Lutzke, K. and Siegel, D. Comparison of Various Sampling Methods for PCDDs and PCDFs in Stack Gas. Chemosphere, 15(9-12), 1187-1192 (1986).
Harner, T., Green, N. J. L., Jones, K. C. Measurements of Octanol–air Partition Coefficients for PCDD/Fs: a Tool in Assessing Air–soil Equilibrium Status. Environ. Sci. Technol., 34, 3109–3114 (2000).
Hart, K. M. and Pankow, J. F. High Volume Air Sampler for Particle and Gas Sampling. 2. Use of Backup Filters to Correct for the Adsorption of Gas-phase Polycyclic Aromatic Hydrocarbons to the Front Filter. Environ. Sci. Technol., 28, 655-661 (1994).
Hell, K., Altwicker, E. R., Stieglitz, L. and Addink, R. Comparison of 2,4,6-trichlorophenol Conversion to PCDD/PCDF on a MSWI-fly Ash and a Model Fly Ash. Chemosphere, 40, 995-1001 (2000).
Hell, K., Stieglitz, L. and Dinjus, E. Mechanistic Aspects of the De-Novo Synthesis of PCDD/PCDF on Model Mixtures and MSWI Fly Ashes Using Amorphous 12C- and 13C-Labeled Carbon. Environ. Sci. Technol., 35, 3892-3898 (2001).
Huang, H. and Buekens, A. Chemical Kinetic Modeling of De Novo Synthesis of PCDD/F in Municipal Waste Incinerators. Chemosphere, 44, 1505-1510 (2001).
Janssens J. J., Daellemans F. F. and Schepens, P. J. C. Sampling Incinerator Effluents for PCDDs and PCDFs: A Critical Evaluation of Existing Sampling Procedures. Chemosphere, 25, 1323-1332 (1992).
Junge, C. E. Basic Considerations about Trace Constituents in the Atmophere as Related to the Fate of Global Pollutants”, Fate of Pollutants in the Air and Water Enviroments. Part I, J. Wiley, New York, 7-26 (1977).
Karadenir, A., Bakoglu, M., Taspinar, F. and Ayberk, S. Removal of PCDD/Fs from Flue Gas by a Fixed-Bed Activated Carbon Filter in a Hazardous Waste Incinerator. Environ. Sci. Technol., 38, 1201-1207 (2004).
Kadowaki, S. and Naiton, H. Gas–particle Partitioning of PCDD/Fs in Nagoya Urban air, Japan. Chemosphere, 59, 1439–1453 (2005).
Khachatryan, L., Asatryan, R. and Dellinger B. Development of Expanded and Core Kinetic Models for the Gas Phase Formation of Dioxins from Chlorinated Phenols. Chemosphere, 52, 695-708 (2003).
Kilgroe, J. D. Control of Dioxin, Furan, and Mercury Emissions from Municipal Waste Combustors. Journal of Hazardous Materials, 47(1-3), 163-194 (1996).
Kim, S. C., Jeon, S. H., Jung, I. R., Kim, K. H., Kwon, M. H., Kim, J. H., Yi, J. H., Kim, S. J., You, J. C. and Jung, D. H. Removal Efficiencies of PCDD/PCDFs by Air Pollution Control Devices in Municipal Solid Waste Incinerators. Chemosphere 43, 773-776 (2001).
Lasagni, M., Collina, E., Tettamanti, M. and Pitea, D. Kinetics of MSWI Fly Ash Thermal Degradation. 1. Empirical Rate Equation for Native Carbon Gasification. Environ. Sci. Technol., 34(1), 130-136 (2000).
Lee, R. G. M. and Jones, K. C. Gas-Particle Partitioning of Atmospheric PCDD/Fs: Measurements and Observations on Modeling. Environ. Sci. Technol., 33(20), 3596-3604 (1999).
Lohmann, R., Harner, T., Thomas, G. O. and Jones, K. C. A Comparative Study of the Gas-Particle Partitioning of PCDD/Fs, PCBs, and PAHs. Environ. Sci. Technol., 34(23), 4943-4951 (2000).
Lorber, M., Pinsky, P., Gehring, P., Braverman, C., Winters, D. and Sovocool, W. Relationships between Dioxins in Soil, Air, Ash and Emissions from a Municipal Solid Waste Incinerator Emitting Large Amounts of Dioxin. Chemsphere, 37(9-12), 2173-2197 (1998).
Mackay, D., Shiu, W. Y. and Ma, K. C. Illustrated Handbook of Physical-chemical Properties and Environmental Fate for Organic Chemicals: Polynuclear Aromatic Hydrocarbons, Polychlorinated Dioxins, and Dibenzofurans. Chelsea, MI: Lewis Publishers (1992).
Mackay, D. Dioxin Characterization, Formation and Minimisation during Municipal Solid Waste (MSW) Incineration: Review. Chemical Engineering Journal, 86 , 343–368 (2002).
Makiya, K. National Environmental Monitoring in Japan. Organohalogen Compounds, 43, 217-220 (1999).
Mager, K., Meurer, U. and Wirling, J. Minimizing Dioxin and Furan Emissions during Zinc Dust Recycle by the Waelz Process. The Minerals, Metals & Materials Society''s Monthly Membership Journal, 20-25 (2003)
Milligan, M. S. and Altwicker, E. The Relationship between De Novo Synthesis of Polychlorinated Dibenzo-p-dioxin and Dibenzofurans and Low-temperature Carbon Gasification in Fly Ash. Environ. Sci. Technol., 27, 1595-1601 (1993).
Milligan, M.S. and Altwicker, E.R., Chlorophenol Reactions on Fly Ash. I. Adorption/desorption Equilibria and Conversion to Polychlorinated Dibenzo-p-dioxins. Environ. Sci. Technol., 30(1), 225-229 (1996).
Oehme, M., Mano, S. and Mikalsen, A. Quantitative Method for the Determination of Femtogram Amounts of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Outdoor Air. Chemosphere, 15(5), 607-617 (1986).
Ogawa, H., Orita, N., Horaguchi, M., Suzuki, Takumi., Okada, M. and Yasuda, S. Dioxin Reduction by Sulfur Component Addition. Chemosphere, 32(1), 151-157 (1996).
Oh, J. E., Choi, J. S. and Chang, Y. S. Gas/particle Partitioning of Polychlorinated Dibenzo-p-dioxins and Dibenzofurans in Atmosphere; Evaluation of Predicting Models. Atmospheric Environment, 35, 4125-4134 (2001).
Olie, K., Vermeulen, P. L. and Hutzinger, O. Chlorodibenzo-p-dioxins and Chlorodibenzofurans Are Trace Components of Fly ash and Flue Gas of Some Municipal Incinerators in the Netherlands. Chemosphere, 6, 455-459 (1977).
Pankow, J. F. Review and Comparative Analysis of the Theories on Partitioning between the Gas and Aerosol Particulate Phase in the Atmosphere. Atmospheric Environment, 21, 2275-2283 (2001).
Quaß, U., Fermann, M. W., Bröker, G. Steps Towards a European Dioxin Emission Inventory. Chemosphere, 40, 1125-1129 (2000).
Raccanelli, S., Tirler, W., Favotto, M. and Donega, M. Montioring PCDD/F De-novo Synthesis in a Municipal Waste Incinerator. Organohalogen Compounds, 41, 255-258 (1999).
Raghunathan, K. and Gullett, B. K. Role of Sulfur in Reducing PCDD and PCDF Formation. Enviorn. Sci. Technol., 30, 1827-1835 (1996).
Rigg, K. B., Brown, T. D. and Schrock, M. E. PCDD/PCDF Emission from Coal-fired Power Plants. Organohalogen Compounds, 24, 51-54 (1995).
Rordorf, B. F. Prediction of Vapor-pressures, Boiling points and Enthalpies of Fusion for 29 Halogenated Dibenzo-para-dioxins and 55 Dibenzofurans by a Vapor-pressure Correlation Method. Chemosphere 18(1-6), 783-788 (1989a).
Ruokojärvi, P. H., Halonen, I. A., Tuppurainen, K. A., Ruuskanen, J., Tarhanen, J. Effect of Gaseous Inhibitors on PCDD/F Formation. Environ. Sci. Technol., 32, 3099-3103 (1998b).
Sakai, S. I. Substance Flow Approach for the Control of PCDDs/DFs-Recent Development on Emission Control and Abatement of PCDDs/Fs in Japan. Organohalogen Compounds, 40, 449-452 (1999).
Sasaki, M., Sato, Y., Ikenaga, Y., Kawakami, T. and Tsukamoto, T. Reduction of Total Dioxin Emission from MSW Incinerators. Organohalogen Compounds, 36, 325-328 (1998).
Sakurai, T., Kobayashi, T., Watanabe, T. and Kondo, T. Formation of PCDD/Fs from Chlorophenols (CPs) on Fly Ash Produced by Municipal Solid Waste Incinerators. Organohalogen Compounds, 27, 183–186 (1996).
Sheffield, A. E. and Pankow, J. F. Specific Surface Area of Urban Atmospheric Particulate Matter in Portland, Oregon. Environ. Sci. Technol., 28, 1759-1766 (1994).
Shin, D., Yang, W., Choi, J., Choi, S. and Jang, Y. S. The Effect of Operation Conditions on PCDD/PCDF Emission in Municipal Solid Waste Incinerators: Stack Gas Measurement and Evaluation of Operating Conditions. Organohalogen Compounds, 36, 143-146 (1998).
Shin, D. H., Choi, S. M., Oh, J. E. and Chang, Y. S. Evaluation of Polychlorinated Dibenzo-P-Dioxin/Dibenzofuran (PCDD/F) Emission in Municipal Solid-Waste Incinerators. Environ. Sci. Technol., 33, 2657-2666 (1999).
Stieglitz, L. and Vogg, H. On Formation Condition of PCDD/PCDF in Fly-ash from Municipal Waste. Chemosphere, 16, 1917-1922 (1987).
Stieglitz, L., Zwick, G., Beck, J., Bautz, H. and Roth, W. Carbonaceous particles in Fly Ash: a Source for the De novo Synthesis of Organochlorocompounds. Chemosphere, 19(1-6), 283-290 (1989).
Stieglitz, L., Vogg, H., Zwick, G., Beck, J. and Bautz, H. On Formation Conditions of Organohalogen Compounds from Particulate Carbon of Fly Ash. Chemosphere 23(8-10), 1255-1264 (1991).
Tiernan, T. O., Garrett, J.H., Vanness, G. F., Bultman, S., Hinders, J. D., Everson, C., Wagel, J. W. and Taylor, M. L. The results of analyses of combustion products collected during tests of a refuse-fired incinerator located in Tsushima, Japan for polychlorinated dibenzodioxins and dibenzofurnas, selected metals and fluorides/chlorides. Prepared by Wright State University, Dayton, OH., for Cooper Engineers, Richmond, CA. Work supported jointly by the State of California Air Resources Board and the Ministry of the Environment, Province of Ontario, Canada. (July 14, 1984).
Tejima, H., Nakagawa, I., Shinoda, T. A. and Maeda, I. PCDDs/PCDFs Reduction by Good Combustion Technology and Fabric Filter with/without Activated Carbon Injection. Chemosphere, 32(1), 169-175 (1996).
Tundo, P., Perosa, A., Selva, M. and Zinovyev, S. S. Mild Catalytic Detoxification Method for PCDDs and PCDFs. Applied Catalysis B: Environmental, 32 L1-L7 (2001).
Tuppurainen, K., Halonen, I., Ruokojärvi, P., Tarhanen, J. and Ruuskanen, J. Formation of PCDDs and PCDFs in Municipal Waste Incineration and Its Inhibition Mechanisms: A Review. Chemosphere, 36(7), 1493-1511 (1998).
Ukisu, Y. and Miyadera, T. Dechlorination of Dioxins with Supported Palladium Catalysts in 2-propanol Solution. Applied Catalysis A: General, 271(1-2), 165-170 (2004).
United Nations Environment Program. Thailand Dioxin Sampling and Analysis Program (2001).
USEPA. Interim Procedures for Estimating Risks Associated with Exposures to Mixtures of Chlorinated Dibenzo-p-dioxins and -dibenzofurans (CDDs and CDFs) and 1989 Update. Washington, DC: Risk Assessment Forum. EPA/625/3-89.016, (1989).
USEPA. Validation of Emission Test Method for PCDDs and PCDFs VII. Prepared by Midwest Research Institute for the Atmospheric Research and Exposure Assessment Laboratory, EPA, Research Triangle Park, NC. Contract 68- 02-4395. (1990).
USEPA. Economic Impact and Preliminary Regulatory Impact Analysis for Proposed MACT-based Emission Standards and Guidelines for Municipal Waste Combustors. Office of Air Quality Planning and Standards. EPA-450/3-91-029. (1992).
USEPA. Health Assessment Document for 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) and Related Compounds. Office of Research and Development, Washington, DC. EPA/600/Bp-92/001c (1994a).
USEPA. Health Assessment Estimating Exposure to Dioxin-Like Compounds, EPA/600/6-88/005Cb, Office of Research and Development, Washington, DC. (1994b).
USEPA. Combustion Emissions Technical Resource Document (CETRED). Washington, DC: Office of Solid Waste and Emergency Response. Draft Report. EPA/530-R-94-014 (1994c).
USEPA. Method 23A, http://www.epa.gov/epaoswer/hazwaste/test/pdfs/0023a.pdf. (1996).
USEPA. Choosing an Adsorption System for VOC: Carbon, Zeolite or Polymers. U.S. Goverment Printing Office: Washington, DC, EPA-456/F-99-004. (1999).
USEPA. Site-Specific Assessment Procedures. Exposure and Human Health Reassessment of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) and Related Compounds. Part I: Estimating Exposure to Dioxin-Like Compounds (4), Washington, DC, EPA/600/P-00/001Bd (2000).
Van De Kleut, D. and Van De Akker, B. Dioxin Removal from Wet Phase Flue Gas Treatment with Powdered Activated Carbon. Organohalogen Compounds, 36, 101-104 (1998).
Van den Berg, M., Birnbaum, L. and Bosveld, A. T. C. Toxic Equivalency Factors (TEFs) for PCBs, PCDDs, PCDFs for Humans and Wildlife. Environ Health Perspect, 106(12), 775-792 (1998).
Vogg, H., Metzger, M. and Steiglitz, L. Recent Findings on the Formation and Decomposition of PCDD/PCDF in Municipal Solid Waste Incineration. Waste Management and Research, 5(3), 285-294 (1987).
Vogg, H., Kreise, S. and Husinger, H. A Potential PCDD/F Source? Organohalogen Compounds, 20 305-307 (1994).
Wang, H.C., Hwang, J.F., Chang, M.B., Chi, K.H. Formation and Removal of Dioxins in an MSWI during Different Operating Periods. Organohalogen Compounds 66, 1180-1186 (2004).
Weber, R., Sakurai, T. and Hagenmaier, H. Formation and Destruction of PCDD/PCDF during Heat-treatment of Fly-ash Samples from Fluidized-bed Incinerators. Chemosphere, 38, 2633-2642 (1999).
Weber, R., Plinke, M., Xu, Z. and Wilken, M. Destruction Efficiency of Catalytic Filters for Polychlorinated Dibenzo-p-dioxin and Dibenzofurans in Laboratory Test and Field Operation- Insight into Destruction and Adsorption Behavior of Semi-volatile Compounds. Applied Catalysis B: Environmental, 31, 195–207 (2001).
Wever, M., Pe Fré, R., Rymen, T. and Geuzens, P. Reduction of Dioxin Emission from a Municipal Waste Incinerator by Wet Gas Scrubbing. DIOXIN ’91, 216-220 (1991).
Wevers, M. and De Fré, R. Dioxin Emission Reduction of a Municipal Waste Incinerator by Injection of Activated Carbon-the Abatement of Memory Effects. Organohalogen Compounds, 36, 342-346 (1998).
Whitby, K. T. The Physical Characteristics of Sulfur Aerosols. Atmospheric Environment, 12, 135–159 (1978).
Yamassaki, H., Kuwata, K. and Miyamoto, H. Effects of Ambient Temperature on Aspects of Airborne Polycyclic Aromatic Hydrocarbons. Environ. Sci. Technol., 16, 189–194 (1982).
Yunje, K. and Jaehoon, Y. The Study on the Contents of PCDDs/PCDFs in Ambient Air, Edible and Human Serum in Korea. Organohalogen Compounds, 43, 167-172 (1999).