| 研究生: |
彭雅琪 Ya-Chi Peng |
|---|---|
| 論文名稱: |
以石蠟/奈米石墨片相變化材料提升IGBT熱管理 Paraffin / graphite nanoplatelet composite phase change material for the enhancement of IGBT thermal management |
| 指導教授: |
李雄
Shyong Lee |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 55 |
| 中文關鍵詞: | 電流轉換器 、IGBT 、相變化材料 、散熱鰭片 |
| 外文關鍵詞: | Converter, IGBT, Phase change material, Heat sink |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討converter中絕緣閘雙極電晶體(Insulated Gate Bipolar Transistor, IGBT)的熱管理,因為IGBT長期處於高電壓工作環境,高溫使其壽命減短影響Converter系統運作。相變化材料(Phase Change Material, PCM)是一種當進行相轉變時會吸收/釋放大量熱能的材料,將它用於散熱有很大的幫助,本論文針對不同濃度石蠟/奈米石墨片來探討其熱物理性質,利用DSC研究PCM複合材料的潛熱值與熔點,SEM照片看出奈米石墨片在石蠟中的分布情況,固定功率實驗可以看出PCM複合材料的加熱性質,而熔滴點實驗可以測得PCM複合材料的形狀穩定性,最後將裝有PCM複合材料的鰭片裝至15kW converter運作,實驗結果有添加奈米石墨片的鰭片溫度較低。
本論文另外設計不同數量散熱鰭片,並用模擬軟體COMSOL進行模擬,與實驗測量溫度比較,進行熱管理分析。
This study reports the development and the thermal investigation of the performance of straight finned heat sink filled with paraffin / graphite nanoplatelets (GNPs) composite phase change material (PCM) for thermal management of insulated gate bipolar transistors (IGBT). The heat sink made of aluminum has a cavity where the composite PCM is stored. GNPs acts as an effective media of thermal conductivity enhancement (TCE), primarily aims to increase the thermal conductivity of paraffin. Differential scanning calorimeter (DSC) tests was done to investigate thermal properties which include melting and solidification temperatures and latent heats.
[1] 經濟部能源局(2011),「穩健減核,逐步邁向非核家園。」http://web3.moeaboe.gov.tw/ECW/populace/content/wHandMenuFile.ashx?menu_id=1891
[2] 張永瑞、姜政綸、李奕德,「微電網發展前景及技術剖析」,臺灣能源期刊,第二卷,第三期,第259-278頁,2015年。
[3] 黃振東,「熱的問題主宰未來3C產業的發展」,工業材料雜誌,第171期,第122頁,2001年。
[4] S. Mondal, “Phase change materials for smart textiles – An overview.“ Applied Thermal Engineering, Volume 28, pp. 1536-1550, 2008.
[5] E.B.S. Mettawee and G.M.R. Assassa, “Experimental study of a compact PCM solar collector.“ Energy, Volume 31, pp. 2958-2968, 2006.
[6] A.A. El-Sebaii, S. Al-Heniti, etl, “One thousand thermal cycles of magnesium chloride hexahydrate as a promising PCM for indoor solar cooking.“ Energy Conversion and Management, Volume 52, pp. 1771-1777, 2001.
[7] W. Saman, F. Bruno and E. Halawa, “Thermal performance of PCM thermal storage unit for a roof integrated solar heating system.“, Solar Energy, Volume. 78, pp. 341-349, 2005.
[8] 陳麗如、張雅淇等,建築外殼結構之潛熱熱控技術,工業材料雜誌,第262期,第127-133頁,2008年。
[9] 維基百科,「石蠟」
https://zh.wikipedia.org/wiki/%E7%9F%B3%E8%9C%A1
[10] A.S. Luyt and I. Krupa, “ Thermal behaviour of low and high molecular weight paraffin waxes used for designing phase change materials.“ Thermochimica Acta, Volume 467, pp. 117–120,2008.
[11] A. Sarı and A. Karaipekli, “ Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material.“ Applied Thermal Engineering, Volume 27, pp. 1271–1277, 2007.
[12] S. Kim and L.T. Drzal, “ High latent heat storage and high thermal conductive phase change materials using exfoliated graphite nanoplatelets.“ Solar Energy Materials and Solar Cells, Volume 93, pp. 136-142, 2009.
[13] J. Xiang and L.T. Drzal, “ Investigation of exfoliated graphite nanoplatelets (xGnP) in improving thermal conductivity of paraffin wax-based phase change material.“ Solar Energy Materials and Solar Cells, Volume 95, pp. 1811-1818, 2011.
[14] T.C. Chang, Y.K. Fuh, etl, “ Thermal management and performance evaluation of a dual bi-directional, soft-switched IGBT-based inverter for the 1st autonomous microgrid power system in Taiwan under various operating conditions.“ Heat and Mass Transfer, Volume 52, pp. 1231-1241, 2015.
[15] Wikimedia Commons, “ IGBT Cross Section.“
https://commons.wikimedia.org/wiki/File:IGBT_Cross_Section.jpg
[16] MITSUBISHI IGBT MODULES CM100DY-24, 三菱電機
[17] M. Mehrali, S.T. Latibari, etl, “ Shape-stabilized phase change materials with high thermal conductivity based on paraffin/graphene oxide composite.“ Energy Conversion and Management, Volume 67, pp. 275–282, 2013.
[18] 安炬科技,http://www.graphage.com.tw
[19] J.N. Shi, M.D. Ger, etl, “ Improving the thermal conductivity and shape-stabilization of phase change materials using nanographite additives.“ Carbon, Volume 51, pp. 365-372, 2013.
[20] M. Mehrali, S.T. Latibari, etl, “ Preparation and characterization of palmitic acid/graphene nanoplatelets composite with remarkable thermal conductivity as a novel shape-stabilized phase change material.“ Applied Thermal Engineering, Volume 61, pp. 633-640, 2013.