| 研究生: |
阮氏青 Nguyen Thi Chinh |
|---|---|
| 論文名稱: | A Numerical Study for Dynamic and Thermodynamic Processes Associated with the Severe Rapid Intensification of Typhoon Noru (2022) |
| 指導教授: |
黃清勇
Ching-Yuang Huang |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
地球科學學院 - 大氣科學學系 Department of Atmospheric Sciences |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 英文 |
| 論文頁數: | 203 |
| 中文關鍵詞: | 颱風諾盧 、劇烈RI 、WRF模式 |
| 外文關鍵詞: | Typhoon Noru, severe rapid intensification, WRF model |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究使用高解析度的WRF模式,探討2022年颱風諾盧(Noru)在其最大風速超過定義之快速增強(RI)門檻三倍以上期間,所伴隨的動力與熱力過程。模擬結果顯示,諾盧的劇烈RI特徵包括:眼牆收縮、緊湊的最大風速半徑(RMW),以及在劇烈RI時期的對流爆發。於劇烈RI期間,諾盧展現出常見的位渦(PV)結構特徵,如眼牆PV塔、從眼牆延伸至颱風眼內的高PV橋,以及位於眼內下平流層的高PV核心,這些結構皆於劇烈RI初期渦旋發展過程中逐步形成。諾盧在劇烈RI後期的局部PV極大值可達眼牆區的133 PVU與下平流層附近的691 PVU,顯示出強烈的內核PV異常存在。位渦趨勢收支分析指出,眼牆PV塔的發展主要由強烈的正值的平均PV平流所驅動,而由快速增強的徑向入流所造成邊界層中加強的非絕熱加熱,亦對於劇烈RI期間PV的生成扮演關鍵角色。針對各物理過程對PV傾向的貢獻,透過放寬熱風平衡假設的延伸的Sawyer–Eliassen(SE)方程進行定量分析。SE方程分析結果指出,強烈非絕熱加熱所誘發的橫向環流可產生主要的正值的平均PV平流,是造成眼牆強烈旋轉增強的主因。此外,來自SE方程解所導出的切向風速趨勢的診斷指出,諾盧在劇烈RI初期階段的強化主要由邊界層中的平均徑向平流所驅動,且在邊界層上方則由中度的平均垂直平流所貢獻,而在後期階段期渦流平流作用則扮演較重要角色。諾盧緊湊的內核結構與近RMW處的強烈非絕熱加熱,有助於其劇烈RI,與2020年具有相似RMW但非絕熱加熱較弱、增強速率較慢的颱風谷米(Goni)形成對比。若將諾盧之非絕熱加熱場替換為2018年颱風玉兔(Yutu)所對應之較大RMW與較外側的非絕熱加熱,則其劇烈RI將顯著減弱。相反地,若將原有的非絕熱加熱場向內移動至RMW之內,其劇烈RI反而會變強。
本研究亦探討SE方程解對於不同時間間隔下殘差項的敏感性。結果顯示,殘差項所引發的橫向環流與切向風速趨勢對時間間隔具輕微敏感性,其中5分鐘的時間間隔為誤差可接受範圍。梯度風與靜力平衡的殘差主要影響對流層上層流場,產生短暫且局部的效應;相較之下,切向風速趨勢的殘差則會逐漸增強上層徑向內流、颱風眼內沉降以及內核旋轉增強,進而隨時間導致與非線性模擬結果間的差異擴大。
This study uses a high-resolution WRF model to investigate the dynamic and thermodynamic processes associated with the severe rapid intensification (RI) of Typhoon Noru (2022) during the stage as its increasing maximum wind speed has exceeded three times of the normal RI threshold. The simulation results indicate that Noru exhibits several characteristic features during the severe RI period, such as eyewall contraction, a compact radius of maximum wind (RMW), and intense convective bursts after the onset of severe RI. Furthermore, Noru exhibits common PV features, including an eyewall PV tower, a high-PV bridge from the eyewall into the eye, and a high-PV core in the lower stratosphere within the eye, which form as the vortex develops during the early stage of severe RI. Local PV maxima in Noru reaches up to 133 PVU in the eyewall region and 691 PVU near the lower stratosphere during the severe RI, highlighting the intense inner-core PV anomalies. Analysis of the PV tendency budget reveals that the development of the eyewall PV tower is mainly driven by strong positive mean PV advection, while the enhanced diabatic heating in the boundary layer plays a significant role in generating PV in the boundary layer during the severe RI period. Contributions of different physical processes to the PV tendency have been quantified by solving the extended Sawyer–Eliassen (SE) equation that relaxes the thermal wind balance. The SE analyses indicate that the dominant positive mean PV advection from the transverse circulation induced by intense diabatic heating is mainly responsible for the strong eyewall spinup during severe RI. Besides, analyses of tangential velocity tendency budget induced by the SE solution indicate that the severe RI at the early stage of Noru is mainly driven by the strong spinup from mean radial advection in the boundary layer and moderate spinup from mean vertical advection above, while eddy advection processes play a more important role during the later stage. The compact inner-core structure of Noru and strong diabatic heating near the RMW are beneficial to its severe RI, in contrast to Typhoon Goni (2020), which exhibited a similar RMW but weaker diabatic heating and slower intensification rate. The severe RI of Noru is also reduced when its diabatic heating is replaced with that of Yutu (2018) with a larger RMW and an outer radial diabatic heating. In contrast, the severe RI becomes even stronger when the inherent diabatic heating is shifted inward inside the RMW.
This study also investigates the sensitivity of the SE solution to the residual terms calculated using different time intervals. Transverse circulation and tangential velocity tendency induced from the residual terms are slightly sensitive to time intervals in use, and a 5-minute interval is acceptable for solution errors. Residuals as the deviation from the gradient and hydrostatic balances primarily influence the upper-tropospheric flow, only producing localized effects. However, the residual in the tangential wind tendency equation gradually enhances upper-level inflow, eye downdraft, and inner-core spinup, contributing to the increasing discrepancies over time from the nonlinear simulations.
Alvey, G. R., J. Zawislak, and E. Zipser, 2015: Precipitation properties observed during tropical cyclone intensity change. Mon. Wea. Rev., 143, 4476–4492. https://doi.org/10.1175/MWR-D-15-0065.1
Berg, L. K., W. I. Gustafson, E. I. Kassianov, E. I., and L. Deng, 2013: Evaluation of a modified scheme for shallow convection: Implementation of CuP and case studies. Mon. Wea. Rev., 141, 134–147. https://doi.org/10.1175/MWR-D-12-00136.1
Bui, H. H., R. K. Smith, M. T. Montgomery, and J. Peng, 2009: Balanced and unbalanced aspects of tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 135, 1715–1731. https://doi.org/10.1002/qj.502
Carrasco, C. A., C. W. Landsea, and Y. Lin, 2014: The influence of tropical cyclone size on its intensification. Wea. Forecasting, 29, 582–590. https://doi.org/10.1175/WAF-D-13-00092.1
Chang, C., and C. Wu, 2017: On the processes leading to the rapid intensification of Typhoon Megi (2010). J. Atmos. Sci., 74, 1169–1200. https://doi.org/10.1175/JAS-D-16-0075.1
Charney, J. G. and A. Eliassen, 1964: On the growth of the hurricane depression. J. Atmos. Sci., 21, 68–75. https://doi.org/10.1175/1520-0469(1964)021<0068:OTGOTH>2.0.CO;2
Chen, X., Y. Wang, K. Zhao, and D. Wu, 2017: A numerical study on rapid intensification of Typhoon Vicente (2012) in the South China Sea. Part I: Verification of simulation, storm-scale evolution, and environmental contribution. Mon. Wea. Rev., 145, 877–898. https://doi.org/10.1175/MWR-D-16-0147.1
Chen, H., and D.-L. Zhang, 2013: On the rapid intensification of Hurricane Wilma (2005). Part II: Convective bursts and the upper-level warm core. J. Atmos. Sci., 70, 146–162. https://doi.org/10.1175/JAS-D-12-062.1
Chen, H., D.-L. Zhang, J. Carton, and R. Atlas, 2011: On the rapid intensification of Hurricane Wilma (2005). Part I: Model prediction and structural changes. Wea. Forecasting, 26, 885–901. https://doi.org/10.1175/WAF-D-11-00001.1
Chen, S. Y., T. C. Nguyen, and C. Y. Huang, 2021a: Impact of radio occultation data on the prediction of Typhoon Haishen (2020) with WRFDA hybrid assimilation. Atmosphere, 12, 1397. https://doi.org/10.3390/atmos12111397
Chen, X., J.-F. Gu, J. A. Zhang, F. D. Marks, R. F. Rogers, and J. J. Cione, 2021b: Boundary layer recovery and precipitation symmetrization preceding rapid intensification of tropical cyclones under shear. J. Atmos. Sci., 78, 1523–1544. https://doi.org/10.1175/JAS-D-20-0252.1
Chen, X., M. Xue, and J. Fang, 2018: Rapid intensification of Typhoon Mujigae (2015) under different sea surface temperatures: Structural changes leading to rapid intensification. J. Atmos. Sci., 75, 4313–4335. https://doi.org/10.1175/JAS-D-18-0017.1
Chen, Y., S. Gao, X. Li, and X. Shen, 2021c: Key environmental factors for rapid intensification of the South China Sea tropical cyclones. Front. Earth Sci., 8, 609727. https://doi.org/10.3389/feart.2020.609727
Diamond, H. J., C. J. Schreck, A. Allgood, E. J. Becker, E. S. Blake, F. G. Bringas, ... and K. M. Wood, 2023: The Tropics. Quart. J. Roy. Meteor. Soc., 104, S207–S270.
Eliassen, A., 1951: Slow thermally or frictionally controlled meridional circulation in a circular vortex. Astrophys. Norv., 5, 19–60.
Emanuel, K. A., 1986: An air–sea interaction theory for tropical cyclones. Part I: Steady-state maintenance. J. Atmos. Sci., 43, 585–605.
https://doi.org/10.1175/1520-0469(1986)043<0585:AASITF>2.0.CO;2
Emanuel, K. A., 1989: The finite-amplitude nature of tropical cyclogenesis. J. Atmos. Sci., 46, 3431–3456.
https://doi.org/10.1175/1520-0469(1989)046<3431:TFANOT>2.0.CO;2
Feng, J., and X. Wang, 2019: Impact of assimilating upper-level dropsonde observations collected during the TCI field campaign on the prediction of intensity and structure of Hurricane Patricia (2015). Mon. Wea. Rev., 147, 3069–3089. https://doi.org/10.1175/MWR-D-18-0305.1
Fox, K. R., and F. Judt, 2018: A numerical study on the extreme intensification of Hurricane Patricia (2015). Wea. Forecasting, 33, 989–999. https://doi.org/10.1175/WAF-D-17-0101.1
Frank, W. M., and E. A. Ritchie, 2001: Effects of vertical wind shear on the intensity and structure of numerically simulated hurricanes. Mon. Wea. Rev., 129, 2249–2269. https://doi.org/10.1175/1520-0493(2001)129<2249:EOVWSO>2.0.CO;2
Fudeyasu, H., Y. Wang, M. Satoh, T. Nasuno, H. Miura, and W. Yanase, 2010: Multiscale interactions in the life cycle of a tropical cyclone simulated in a global cloud-system-resolving model. Part I: Large-scale and storm-scale evolutions. Mon. Wea. Rev., 138, 4285–4304. https://doi.org/10.1175/2010MWR3474.1
Gilmore, Matthew S., Jerry M. Straka, and Erik N. Rasmussen, 2004: Precipitation uncertainty due to variations in precipitation particle parameters within a simple microphysics scheme. Mon. Wea. Rev., 132, 2610–2627. https://doi.org/10.1175/MWR2810.1
Glotfelty, T., K. Alapaty, J. He, P. Hawbecker, X. Song, and G. Zhang, 2019: The Weather Research and Forecasting Model with Aerosol–Cloud Interactions (WRF-ACI): Development, evaluation, and initial application. Mon. Wea. Rev., 147, 1491–1511. https://doi.org/10.1175/MWR-D-18-0267.1
Gray, W. M., 1968: Global view of the origin of tropical disturbances and storms. Mon. Wea. Rev., 96, 669–700.
https://doi.org/10.1175/1520-0493(1968)096<0669:GVOTOO>2.0.CO;2
Hack, J. J., and W. H. Schubert, 1986: Nonlinear response of atmospheric vortices to heating by organized cumulus convection. J. Atmos. Sci., 43, 1559–1573.
https://doi.org/10.1175/1520-0469(1986)043<1559:NROAVT>2.0.CO;2
Han, J. and H.-L. Pan, 2011: Revision of convection and vertical diffusion schemes in the NCEP Global Forecast System. Wea. Forecasting, 26, 520–533. https://doi.org/10.1175/WAF-D-10-05038.1
Hendricks, E. A., and W. H. Schubert, 2010: Adiabatic rearrangement of hollow PV towers. J. Adv. Model. Earth Syst., 2, 1–19. https://doi.org/10.3894/JAMES.2010.2.8
Hendricks, E. A., M. S. Peng, B. Fu, and T. Li, 2010: Quantifying environmental control on tropical cyclone intensity change. Mon. Wea. Rev., 138, 3243–3270.
https://doi.org/10.1175/2010MWR3185.1
Hendricks, E. A., W. H. Schubert, R. K. Taft, H. Wang, and J. P. Kossin, 2009: Lifecycles of hurricane-like vorticity rings. J. Atmos. Sci., 66, 705–722.
https://doi.org/10.1175/2008JAS2820.1
Heng, J., Y. Wang, and W. Zhou, 2017: Revisiting the balanced and unbalanced aspects of tropical cyclone intensification. J. Atmos. Sci., 74, 2575–2591. https://doi.org/10.1175/JAS-D-17-0046.1
Hill, K. A., and G. M. Lackmann, 2009: Influence of environmental humidity on tropical cyclone size. Mon. Wea. Rev., 137, 3294–3315. https://doi.org/10.1175/2009MWR2679.1
Hirschberg, P. A., and J. M. Fritsch, 1993: On understanding height tendency. Mon. Wea. Rev., 121, 2646–2661.
https://doi.org/10.1175/1520-0493(1993)121<2646:OUHT>2.0.CO;2
Holland, G. J., and R. T. Merrill, 1984: On the dynamics of tropical cyclone structural changes. Quart. J. Roy. Meteor. Soc., 110, 723–745. https://doi.org/10.1002/qj.49711046510
Holland, G. J., 1997: The maximum potential intensity of tropical cyclones. J. Atmos. Sci., 54, 2519–2541.
https://doi.org/10.1175/1520-0469(1997)054<2519:TMPIOT>2.0.CO;2
Hong, S-Y, J. Dudhia, and S.–H. Chen, 2004: A revised approach to ice microphysical processes for the bulk parameterization of clouds and precipitation. Mon. Wea. Rev., 132, 103–120. https://doi.org/10.1175/1520-0493(2004)132<0103:ARATIM>2.0.CO;2
Hong, S.-Y., and J.-O. J. Lim, 2006: The WRF single-moment 6-class microphysics scheme (WSM6). J. Korean Meteor. Soc., 42, 129–151.
Hong, S.-Y., Y. Noh, and J. Dudhia, 2006: A new vertical diffusion package with an explicit treatment of entrainment processes. Mon. Wea. Rev., 134, 2318–2341.
https://doi.org/10.1175/MWR3199.1
Huang, C.-Y., C. H. Huang, and W. C. Skamarock, 2019: Track deflection of typhoon Nesat (2017) as realized by multiresolution simulations of a global model. Mon. Wea. Rev., 147, 1593–1613. https://doi.org/10.1175/MWR-D-18-0275.1
Huang, C. -Y., J. Y. Lin, W. C. Skamarock, and S. Y. Chen, 2022: Typhoon forecasts with dynamic vortex initialization using an unstructured mesh global model. Mon. Wea. Rev., 150, 3011-3030. https://doi.org/10.1175/MWR-D-21-0235.1
Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough, and W. D. Collins, 2008: Radiative forcing by long–lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res., 113, D13103.
https://doi.org/10.1029/2008JD009944
Janjic, Z. I., 1994: The Step–Mountain Eta Coordinate Model: Further developments of the convection, viscous sublayer, and turbulence closure schemes. Mon. Wea. Rev., 122, 927–945. https://doi.org/10.1175/1520-0493(1994)122<0927:TSMECM>2.0.CO;2
Ji, D., and F. Qiao, 2023: Does extended Sawyer–Eliassen equation effectively capture the secondary circulation of a simulated tropical cyclone?. J. Atmos. Sci., 80, 871–888. https://doi.org/10.1175/JAS-D-21-0320.1
Kain, J. S., 2004: The Kain–Fritsch convective parameterization: An update. J. Appl. Meteor. Climatol., 43, 170–181.
https://doi.org/10.1175/1520-0450(2004)043<0170:TKCPAU>2.0.CO;2
Kanada, S., and A. Wada, 2015: Numerical study on the extremely rapid intensification of an intense tropical cyclone: Typhoon Ida (1958). J. Atmos. Sci., 72, 4194–4217. https://doi.org/10.1175/JAS-D-14-0247.1
Kanase, R.D., and P. Salvekar, 2015: Effect of physical parameterization schemes on track and intensity of cyclone LAILA using WRF model. Asia-Pac. J. Atmos. Sci., 51, 205–227.
Kaplan, J., and M. DeMaria, 2003: Large-scale characteristics of rapidly intensifying tropical cyclones in the North Atlantic basin. Wea. Forecasting, 18, 1093-1108. https://doi.org/10.1175/1520-0434(2003)018<1093:LCORIT>2.0.CO;2
Kelley, O. A., J. Stout, and J. B. Halverson, 2005: Hurricane intensification detected by continuously monitoring tall precipitation in the eyewall. Geophys. Res. Lett., 32, L20819. https://doi.org/10.1029/2005GL023583
Kessler, E., 1969: On the distribution and continuity of water substance in atmospheric circulations. In On the distribution and continuity of water substance in atmospheric circulations (pp. 1-84). Boston, MA: American Meteorological Society.
Kieper, M. E., and H. Jiang, 2012: Predicting tropical cyclone rapid intensification using the 37 GHz ring pattern identified from passive microwave measurements. Geophys. Res. Lett., 39, L13804. https://doi.org/10.1029/2012GL052115
Kieu, C. Q., V. Tallapragada, D.-L. Zhang, and Z. Moon, 2016: On the development of double warm-core structures in intense tropical cyclones. J. Atmos. Sci., 73, 4487–4506. https://doi.org/10.1175/JAS-D-16-0015.1
Kimberlain, T. B., E. S. Blake, and J. P. Cangialosi, 2016: Hurricane Patricia. National Hurricane Center Tropical Cyclone Rep., 32 pp.
Kossin, J. P., and W. H. Schubert, 2001: Mesovortices, polygonal flow patterns, and rapid pressure falls in hurricane-like vortices. J. Atmos. Sci., 58, 2196–2209.
https://doi.org/10.1175/1520-0469(2001)058<2196:MPFPAR>2.0.CO;2
Kossin, J. P., and W. H. Schubert, 2004: Mesovortices in Hurricane Isabel, 2004. Bull. Amer. Meteor. Soc., 85, 151–153. https://www.jstor.org/stable/26216936
Kuo, H. C., S. Tsujino, C. C. Huang, C. C. Wang, and K. Tsuboki, 2019: Diagnosis of the dynamic efficiency of latent heat release and the rapid intensification of Supertyphoon Haiyan (2013). Mon. Wea. Rev., 147, 1127-1147. https://doi.org/10.1175/MWR-D-18-0149.1
Kwon, Y.-C. and S.-Y. Hong, 2017: A mass-flux cumulus parameterization scheme across gray-zone resolutions. Mon. Wea. Rev., 145, 585–598. https://doi.org/10.1175/MWR-D-16-0034.1
Lee, H., and J. J. Baik, 2018: A comparative study of bin and bulk cloud microphysics schemes in simulating a heavy precipitation case. Atmosphere, 9, 475.
https://doi.org/10.3390/atmos9120475
Lin, I. I., R. F. Rogers, H. C. Huang, Y. C. Liao, D. Herndon, J. Y. Yu, ... and C. C. Lien, 2021: A tale of two rapidly intensifying supertyphoons: Hagibis (2019) and Haiyan (2013). Bull. Amer. Meteor. Soc., 102, E1645–E1664. https://doi.org/10.1175/BAMS-D-20-0223.1
Mandal, M., U. C. Mohanty, and S. Raman, 2004: A study on the impact of parameterization of physical processes on prediction of tropical cyclones over the Bay of Bengal with NCAR/PSU mesoscale model. Nat. Hazards, 31, 391-414.
Mansell, E. R., C. L. Ziegler, and E. C. Bruning, 2010: Simulated electrification of a small thunderstorm with two–moment bulk microphysics. J. Atmos. Sci., 67, 171–194. https://doi.org/10.1175/2009JAS2965.1
Marks, F. D., and Coauthors, 1998: Landfalling tropical cyclones: Forecast problems and associated research opportunities. Bull. Amer. Meteor. Soc., 79, 305–323. https://www.jstor.org/stable/26215049
Martinez, J., M. M. Bell, R. F. Rogers, and J. D. Doyle, 2019: Axisymmetric potential vorticity evolution of Hurricane Patricia (2015). J. Atmos. Sci., 76, 2043–2063. https://doi.org/10.1175/JAS-D-18-0373.1
McFarquhar, G. M., B. F. Jewett, M. S. Gilmore, S. W. Nesbitt, and T.-L. Hsieh, 2012: Vertical velocity and microphysical distributions related to rapid intensification in a simulation of Hurricane Dennis (2005). J. Atmos. Sci., 69, 3515–3534. https://doi.org/10.1175/JAS-D-12-016.1
Miller, W., H. Chen, and D.-L. Zhang, 2015: On the rapid intensification of Hurricane Wilma (2005). Part III: Effects of latent heat of fusion. J. Atmos. Sci., 72, 3829–3849. https://doi.org/10.1175/JAS-D-14-0386.1
Miyamoto, Y., and T. Takemi, 2013: A transition mechanism for the spontaneous axisymmetric intensification of tropical cyclones. J. Atmos. Sci., 70, 112–129.
https://doi.org/10.1175/JAS-D-11-0285.1
Molinari, J., and D. Vollaro, 2010: Rapid intensification of a sheared tropical storm. Mon. Wea. Rev., 138, 3869–3885. https://doi.org/10.1175/2010MWR3378.1
Möller, J. D., and L. J. Shapiro, 2002: Balanced contributions to the intensification of Hurricane Opal as diagnosed from a GFDL model forecast. Mon. Wea. Rev., 130, 1866–1881. https://doi.org/10.1175/1520-0493(2002)130<1866:BCTTIO>2.0.CO;2
Montgomery, M. T., and R. K. Smith, 2014: Paradigms for tropical cyclone intensification. Aust. Meteorol. Oceanogr, 64, 37–66. https://doi.org/10.1071/ES14005
Montgomery, M. T., and J. Persing, 2021: Does balance dynamics well capture the secondary circulation and spinup of a simulated hurricane? J. Atmos. Sci., 78, 75–95. https://doi.org/10.1175/JAS-D-19-0258.1
Montgomery, M. T., and R. J. Kallenbach, 1997: A theory for vortex Rossby-waves and its application to spiral bands and intensity changes in hurricanes. Quart. J. Roy. Meteor. Soc., 123, 435–465. https://doi.org/10.1002/qj.49712353810
Montgomery, M. T., and R. K. Smith, 2017: On the applicability of linear, axisymmetric dynamics in intensifying and mature tropical cyclones. Fluids, 2, 69. https://doi.org/10.3390/fluids2040069
Montgomery, M. T., M. E. Nicholls, T. A. Cram, and A. B. Saunders, 2006: A vortical hot tower route to tropical cyclogenesis. J. Atmos. Sci., 63, 355–386. https://doi.org/10.1175/JAS3604.1
Morrison, H., G. Thompson, V. Tatarskii, 2009: Impact of Cloud Microphysics on the Development of Trailing Stratiform Precipitation in a Simulated Squall Line: Comparison of One– and Two–Moment Schemes. Mon. Wea. Rev., 137, 991–1007. https://doi.org/10.1175/2008MWR2556.1
Nguyen, T. C., and C. Y. Huang, 2021: A comparative modeling study of Supertyphoons Mangkhut and Yutu (2018) past the Philippines with ocean-coupled HWRF. Atmosphere, 12, 1055. https://doi.org/10.3390/atmos12081055
Nguyen, T. C., and C. Y. Huang, 2023: Investigation on the Intensification of Supertyphoon Yutu (2018) Based on Symmetric Vortex Dynamics Using the Sawyer–Eliassen Equation. Atmosphere, 14, 1683. https://doi.org/10.3390/atmos14111683
Nguyen, T. C., and C. Y. Huang, H. C. Kuo, L. Y. Kuo, 2025: Intensification of Supertyphoon Hagibis (2019) with Concentric Eyewall Formation as Explored by the Extended Sawyer-Eliassen Equation. Mon. Wea. Rev., https://doi.org/10.1175/MWR-D-24-0159.1
Nolan, D. S., Y. Moon, and D. P. Stern, 2007: Tropical cyclone intensification from asymmetric convection: Energetics and efficiency. J. Atmos. Sci., 64, 3377–3405. https://doi.org/10.1175/JAS3988.1
Nolan, D. S., and L. D. Grasso, 2003: Nonhydrostatic, three-dimensional perturbations to balanced, hurricane-like vortices. Part II: Symmetric response and nonlinear simulations. J. Atmos. Sci., 60, 2717–2745.
https://doi.org/10.1175/1520-0469(2003)060<2717:NTPTBH>2.0.CO;2
Ohno, T., and M. Satoh, 2015: On the warm core of a tropical cyclone formed near the tropopause. J. Atmos. Sci., 72, 551–571. https://doi.org/10.1175/JAS-D-14-0078.1
Ooyama, K. V., 1982: Conceptual evolution of the theory and modeling of the tropical cyclone. J. Meteor. Soc. Japan, 60, 369–379. https://doi.org/10.2151/jmsj1965.60.1_369
Oyama, R., and A. Wada, 2019: The relationship between convective bursts and warm-core intensification in a nonhydrostatic simulation of Typhoon Lionrock (2016). Mon. Wea. Rev., 147, 1557–1579. https://doi.org/10.1175/MWR-D-18-0457.1
Paull, G., K. Menelaou, and M. K. Yau, 2017: Sensitivity of tropical cyclone intensification to axisymmetric heat sources: The role of inertial stability. J. Atmos. Sci., 74, 2325–2340. https://doi.org/10.1175/JAS-D-16-0298.1
Pendergrass, A. G., and H. E. Willoughby, 2009: Diabatically induced secondary flows in tropical cyclones. Part I: Quasi-steady forcing. Mon. Wea. Rev., 137, 805–821. https://doi.org/10.1175/2008MWR2657.1
Peng, J., M. S. Peng, and T. Li, 2008: Dependence of vortex axisymmetrization on the characteristics of the asymmetry. Quart. J. Roy. Meteor. Soc., 134, 1253–1268. https://doi.org/10.1002/qj.281
Persing, J., and M. T. Montgomery, 2003: Hurricane superintensity. J. Atmos. Sci., 60, 2349–2371. https://doi.org/10.1175/1520-0469(2003)060<2349:HS>2.0.CO;2
Qin, N., and D. L. Zhang, 2018: On the extraordinary intensification of Hurricane Patricia (2015). Part I: Numerical experiments. Wea. Forecasting, 33, 1205–1224. https://doi.org/10.1175/WAF-D-18-0045.1
Qin, N., D. L. Zhang, and Y. Li, 2016: A statistical analysis of steady eyewall sizes associated with rapidly intensifying hurricanes. Wea. Forecasting, 31, 737–742.
https://doi.org/10.1175/WAF-D-16-0016.1
Raju, P. V. S., J. Potty, and U. C. Mohanty, 2011: Sensitivity of physical parameterizations on prediction of tropical cyclone Nargis over the Bay of Bengal using WRF model. Meteorol. Atmos. Phys., 113, 125-137.
Reasor, P. D., M. D. Eastin, and J. F. Gamache, 2009: Rapidly intensifying Hurricane Guillermo (1997). Part I: Low-wavenumber structure and evolution. Mon. Wea. Rev., 137, 603-631. https://doi.org/10.1175/2008MWR2487.1
Rios-Berrios, R., P. M. Finocchio, J. J. Alland, X. Chen, M. S. Fischer, S. N. Stevenson, and D. Tao, 2024: A review of the interactions between tropical cyclones and environmental vertical wind shear. J. Atmos. Sci., 81, 713-741. https://doi.org/10.1175/JAS-D-23-0022.1
Rogers, R. F., and Coauthors, 2017: Rewriting the tropical record books: The extraordinary intensification of Hurricane Patricia (2015). Bull. Amer. Meteor. Soc., 98, 2091–2112. https://doi.org/10.1175/BAMS-D-16-0039.1
Rogers, R. F., 2010: Convective-scale structure and evolution during a high-resolution simulation of tropical cyclone rapid intensification. J. Atmos. Sci., 67, 44–70. https://doi.org/10.1175/2009JAS3122.1
Rogers, R. F., P. D. Reasor, and S. Lorsolo, 2013: Airborne Doppler observations of the inner-core structural differences between intensifying and steady-state tropical cyclones. Mon. Wea. Rev., 141, 2970–2991. https://doi.org/10.1175/MWR-D-12-00357.1
Rogers, R., J. A. Zhang, J. Zawislak, H. Jiang, G. R. Alvey III, E. J. Zipser, and S. N. Stevenson, 2016: Observations of the structure and evolution of Hurricane Edouard (2014) during intensity change. Part II: Kinematic structure and the distribution of deep convection. Mon. Wea. Rev., 144, 3355–3376. https://doi.org/10.1175/MWR-D-16-0017.1
Rotunno, R., and K. A. Emanuel, 1987: An air–sea interaction theory for tropical cyclones. Part II: Evolutionary study using a nonhydrostatic axisymmetric numerical model. J. Atmos. Sci., 44, 542–561.
Ryglicki, D. R., J. H. Cossuth, D. Hodyss, and J. D. Doyle, 2018: The unexpected rapid intensification of tropical cyclones in moderate vertical wind shear. Part I: Overview and observations. Mon. Wea. Rev., 146, 3773–3800. https://doi.org/10.1175/MWR-D-18-0020.1
Schubert, W. H., and J. J. Hack, 1982: Inertial stability and tropical cyclone development. J. Atmos. Sci., 39, 1687–1697.
https://doi.org/10.1175/1520-0469(1982)039<1687:ISATCD>2.0.CO;2
Schubert, W. H., M. T. Montgomery, R. K. Taft, T. A. Guinn, S. R. Fulton, J. P. Kossin, and J. P. Edwards, 1999: Polygonal eyewalls, asymmetric eye contraction, and potential vorticity mixing in Hurricanes. J. Atmos. Sci., 56, 1197–1223. https://doi.org/10.1175/1520-0469(1999)056<1197:PEAECA>2.0.CO;2
Shapiro, L. J., and H. E. Willoughby, 1982: The response of balanced hurricanes to local sources of heat and momentum. J. Atmos. Sci., 39, 378–394. https://doi.org/10.1175/1520-0469(1982)039<0378:TROBHT>2.0.CO;2
Shay, L. K., and J. K. Brewster, 2010: Oceanic heat content variability in the eastern Pacific Ocean for hurricane intensity forecasting. Mon. Wea. Rev., 138, 2110–2131. https://doi.org/10.1175/2010MWR3189.1
Shi, D., and G. Chen, 2021: Double warm-core structure and potential vorticity diagnosis during the rapid intensification of Supertyphoon Lekima (2019). J. Atmos. Sci., 78, 2471–2492. https://doi.org/10.1175/JAS-D-20-0383.1
Shimada, U., and T. Horinouchi, 2018: Reintensification and eyewall formation in strong shear: A case study of Typhoon Noul (2015). Mon. Wea. Rev., 146, 2799–2817. https://doi.org/10.1175/MWR-D-18-0035.1
Skamarock, W. C., J. B. Klemp, J. Dudhia, D. O. Gill, L. Zhiquan, J. Berner, W. Wang, J. G. Powers, M. G. Duda, D. M. Barker, and X.-Y. Huang, 2019: A Description of the Advanced Research WRF Model Version 4. NCAR Tech. Note NCAR/TN-475+STR 145.
Smith, R. K., and M. T. Montgomery, 2016: The efficiency of diabatic heating and tropical cyclone intensification. Quart. J. Roy. Meteor. Soc., 142, 2081–2086.
https://doi.org/10.1002/qj.2804
Stern, D. P., and F. Zhang, 2013a: How does the eye warm? Part I: A potential temperature budget analysis of an idealized tropical cyclone. J. Atmos. Sci., 70, 73–90. https://doi.org/10.1175/JAS-D-11-0329.1
Stern, D. P., and F. Zhang, 2013b: How does the eye warm? Part II: Sensitivity to vertical wind shear and a trajectory analysis. J. Atmos. Sci., 70, 1849–1873. https://doi.org/10.1175/JAS-D-12-0258.1
Stern, D. P., and F. Zhang, 2016: The warm-core structure of Hurricane Earl (2010). J. Atmos. Sci., 73, 3305–3328. https://doi.org/10.1175/JAS-D-15-0328.1
Susca-Lopata, G., J. Zawislak, E. J. Zipser, and R. F. Rogers, 2015: The role of observed environmental conditions and precipitation evolution in the rapid intensification of Hurricane Earl (2010). Mon. Wea. Rev., 143, 2207–2223. https://doi.org/10.1175/MWR-D-14-00283.1
Tao, D., P. J. Van Leeuwen, M. Bell, Y. Ying, 2022: Dynamics and predictability of tropical cyclone rapid intensification in ensemble simulations of Hurricane Patricia (2015). J. Geophys. Res. Atmos., 127, e2021JD036079. https://doi.org/10.1029/2021JD036079
Tao, W. -K., J. Simpson, M. McCumber, 1989: An Ice–Water Saturation Adjustment. Mon. Wea. Rev., 117, 231–235. https://doi.org/10.1175/1520-0493(1989)117<0231:AIWSA>2.0.CO;2
Tao, W.-K., D. Wu, S. Lang, J.-D. Chern, C. Peters-Lidard, A. Fridlind, and T. Matsui, 2016: High-resolution NU-WRF simulations of a deep convective-precipitation system during MC3E: Further improvements and comparisons between Goddard microphysics schemes and observations. J. Geophys. Res. Atmos., 121, 1278–1305.
https://doi.org/10.1002/2015JD023986
Tao, C., and H. Jiang, 2015: Distributions of shallow to very deep precipitation–convection in rapidly intensifying tropical cyclones. J. Climate, 28, 8791–8824.
https://doi.org/10.1175/JCLI-D-14-00448.1
Thompson, G., P. R. Field, R. M. Rasmussen, and W. D. Hall, 2008: Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: Implementation of a new snow parameterization. Mon. Wea. Rev., 136, 5095–5115.
https://doi.org/10.1175/2008MWR2387.1
Tiedtke, M., 1989: A comprehensive mass flux scheme for cumulus parameterization in large–scale models. Mon. Wea. Rev., 117, 1779–1800. https://doi.org/10.1175/1520-0493(1989)117<1779:ACMFSF>2.0.CO;2
Trabing, B. C., and M. M. Bell, 2020: Understanding error distributions of hurricane intensity forecasts during rapid intensity changes. Wea. Forecasting, 35, 2219–2234. https://doi.org/10.1175/WAF-D-19-0253.1
Tsujino, S., and H. C. Kuo, 2020: Potential vorticity mixing and rapid intensification in the numerically simulated Supertyphoon Haiyan (2013). J. Atmos. Sci., 77, 2067–2090. https://doi.org/10.1175/JAS-D-19-0219.1
Tsujino, S., K. Tsuboki, H. Yamada, T. Ohigashi, K. Ito, and N. Nagahama, 2021: Intensification and maintenance of a double warm-core structure in Typhoon Lan (2017) simulated by a cloud-resolving model. J. Atmos. Sci., 78, 595–617. https://doi.org/10.1175/JAS-D-20-0049.1
Van Sang, N., R. K. Smith, and M. T. Montgomery, 2008: Tropical cyclone intensification and predictability in three dimensions. Q. J. R. Meteorol. Soc., 134, 563–582. https://doi.org/10.1002/qj.235
Vigh, J. L., and W. H. Schubert, 2009: Rapid development of the tropical cyclone warm core. J. Atmos. Sci., 66, 3335–3350. https://doi.org/10.1175/2009JAS3092.1
Vu, D. H., C.-Y. Huang, and T.-C. Nguyen, 2024: Numerical Investigation of Track and Intensity Evolution of Typhoon Doksuri (2023). Atmosphere, 15, 1105. https://doi.org/10.3390/atmos15091105
Wang, H., and Y. Wang, 2014: A numerical study of Typhoon Megi (2010). Part I: Rapid intensification. Mon. Wea. Rev., 142, 29–48. https://doi.org/10.1175/MWR-D-13-00070.1
Wang, S., and R. K. Smith, 2019: Consequences of regularizing the Sawyer–Eliassen equation in balance models for tropical cyclone behaviour. Quart. J. Roy. Meteor. Soc., 145, 3766–3779. https://doi.org/10.1002/qj.3656
Wang, X., and D.-L. Zhang, 2003: Potential vorticity diagnosis of a simulated hurricane. Part I: Formation and quasi balanced flow. J. Atmos. Sci., 60, 1593–1607.
https://doi.org/10.1175/2999.1
Wang, X., and H. Jiang, 2021: Contrasting behaviors between the rapidly intensifying and slowly intensifying tropical cyclones in the North Atlantic and eastern Pacific basins. J. Climate, 34, 987–1003. https://doi.org/10.1175/JCLI-D-19-0908.1
Wu, Q., and Z. Ruan, 2021: Rapid contraction of the radius of maximum tangential wind and rapid intensification of a tropical cyclone. J. Geophys. Res. Atmos., 123, e2020JD033681. https://doi.org/10.1029/2020JD033681
Wu, C.-C., S.-N. Wu, H.-H. Wei, and S. F. Abarca, 2016: The role of convective heating in tropical cyclone eyewall ring evolution. J. Atmos. Sci., 73, 319–330. https://doi.org/10.1175/JAS-D-15-0085.1
Xu, J., and Y. Wang, 2018b: Dependence of tropical cyclone intensification rate on sea surface temperature, storm intensity, and size in the western North Pacific. Wea. Forecasting, 33, 523–537. https://doi.org/10.1175/WAF-D-17-0095.1
Xu, J., and Y. Wang, 2015: A statistical analysis on the dependence of tropical cyclone intensification rate on the storm intensity and size in the North Atlantic. Wea. Forecasting, 30, 692–701. https://doi.org/10.1175/WAF-D-14-00141.1
Xu, J., and Y. Wang, 2018a: Effect of the initial vortex structure on intensification of a numerically simulated tropical cyclone. J. Meteor. Soc. Japan, 96, 111–126. https://doi.org/10.2151/jmsj.2018-014
Yuter, S. E., and R. A. Houze Jr., 1995: Three-dimensional kinematic and microphysical evolution of Florida cumulonimbus. Part II: Frequency distributions of vertical velocity, reflectivity, and differential reflectivity. Mon. Wea. Rev., 123, 1941–1963. https://doi.org/10.1175/1520-0493(1995)123<1941:TDKAME>2.0.CO;2
Zagrodnik, J. P., and H. Jiang, 2014: Rainfall, convection, and latent heating distributions in rapidly intensifying tropical cyclones. J. Atmos. Sci., 71, 2789–2809.
https://doi.org/10.1175/JAS-D-13-0314.1
Zeng, Z., Y. Wang, and C.-C. Wu, 2007: Environmental dynamical control of tropical cyclone intensity–An observational study. Mon. Wea. Rev., 135, 38–59. https://doi.org/10.1175/JAS-D-13-0314.1
Zhang, C. and Y. Wang, 2017: Projected Future Changes of Tropical Cyclone Activity over the Western North and South Pacific in a 20-km-Mesh Regional Climate Model. J. Climate, 30, 5923–5941. https://doi.org/10.1175/JCLI-D-16-0597.1
Zhang, C., Y. Wang, and K. Hamilton, 2011: Improved representation of boundary layer clouds over the southeast pacific in ARW–WRF using a modified Tiedtke cumulus parameterization scheme. Mon. Wea. Rev., 139, 3489–3513. https://doi.org/10.1175/MWR-D-10-05091.1
Zhang, X., and Y. Wang, 2019: Satellite-Based Assessment of Various Cloud Microphysics Schemes in Simulating Typhoon Hydrometeors. Adv. Meteorol., 2019, 3168478. https://doi.org/10.1155/2019/3168478
Zhang, D.-L., and H. Chen, 2012: Importance of the upper-level warm core in the rapid intensification of a tropical cyclone. Geophys. Res. Lett., 39, L02806.
https://doi.org/10.1029/2011GL050578
Zheng, Y., K. Alapaty, J. A. Herwehe, A. D. Del Genio, and D. Niyogi, 2016: Improving high-resolution weather forecasts using the Weather Research and Forecasting (WRF) Model with an updated Kain–Fritsch scheme. Mon. Wea. Rev.,117, 833–860.
https://doi.org/10.1175/MWR-D-15-0005.1