| 研究生: |
謝佶志 Chi-Chih Hsieh |
|---|---|
| 論文名稱: |
使用多種不同深度學習神經網路模型應用於非線性功率放大器之數位預失真技術研究與比較 Digital Predistortion Techniques for Nonlinear Power Amplifiers with Deep Learning Neural Network Models |
| 指導教授: |
張大中
Dah-Chung Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 通訊工程學系在職專班 Executive Master of Communication Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | 數位預失真 、功率放大器 、類神經網路 |
| 外文關鍵詞: | Digital Predistortion, power amplifier, Neural Network |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
正交分頻多工(Orthogonal Frequency Division Multiplexing,OFDM)技術有著高效率頻寬效益以及多路徑通道的穩定傳輸數據,使這項技術成為現代無線通訊不可或缺的其一技術。然而,OFDM技術本身具有高峰值對均值功率比(Peak-to-Average Power Ratio,PAPR)的問題,造成功率放大器呈現非線性輸出失真現象,進而使調變訊號產生頻譜再生(Spectral Regeneration)而干擾鄰近通道的訊號品質。為了解決此問題,便提出在OFDM訊號經過功率放大器前,讓訊號先經過數位預失真器(Digital Pre-Distorter)處理,此技術讓OFDM訊號在經過功率放大器後仍然呈現線性輸出,而考慮到寬頻系統存在記憶性的問題,亦需要在預失真器裡加入記憶性參數。在本論文的系統架構中,將功率放大器表示成記憶性沙雷(Saleh)模型;預失真器則使用記憶性多項式做為預失真模型。本論文提出使用類神經網路技術於間接學習架構預失真器,透過實驗來比較過去文獻常用的自適應演算法和神經網路應用於數位預失真的效能表現。
Orthogonal Frequency Division Multiplexing (OFDM) technology has become indispensable in modern wireless communication systems because of its high- efficiency bandwidth and high transmission stability in multi-path channel environments. However, OFDM technology itself has the problem of high peak-to-average power ratio (PAPR), which causes the output of the power amplifier to exhibit nonlinear gain distortion, which in turn causes the modulation signal to produce spectral regeneration (Spectral Regeneration) and interfere with the signal transmitted by the adjacent channel. In order to solve this problem, before the OFDM signal passes through the power amplifier, the signal is processed by a Digital pre-distorter. This technology allows the OFDM signal to still show a linear gain output curve after passing through the power amplifier. Considering the memory problem of broadband systems, it is also necessary to add memory parameters to the Pre-distorter. In the system architecture of this paper, the power amplifier is represented as a memory Saleh model and the Pre-distorter uses a memory polynomial as the model. By comparing with the Pre-distortion technology in the past literature, this paper proposes to use the neural network technology to indirectly learn the architecture of Pre-distorter parameter adaptive iteration, which is more suitable for application scenarios and accelerates the convergence speed, thereby achieving a more ideal power Amplifier linearization compensation technology.
[1] J. Armstrong, “Ofdm for optical communications,”Journal of Lightwave Techno-logy,vol. 27, no. 3, pp. 189–204, Feb 2009.
[2] P. B. Kenington, High Linearity RF Amplifier Design, 1st ed. Norwood, MA,
USA: Artech House, Inc., 2000.
[3] M. Gudmundson and P. O. Anderson, “Adjacent channel interference in an ofdm
system,” in Vehicular Technology Conference, 1996. Mobile Technology for the
Human Race., IEEE 46th, vol. 2, Apr 1996, pp. 918–922 vol.2.
[4] J. Pochmara, R. Mierzwiak, and K. Werner, “A combined adaptive predistortion
scheme with input back-off,” in Mixed Design of Integrated Circuits Systems,
2009. MIXDES ’09. MIXDES-16th International Conference, June 2009, pp. 583–587.
[5] A. J. Zozaya and E. Bertran, “On the performance of cartesian feedback and feedforward linearization structures operating at 28 ghz,” IEEE Transactions on Broadcasting,vol. 50, no. 4, pp. 382–389, Dec 2004.
[6] K.-P. Chan and K. K. M. Cheng, “Novel dsp algorithms for adaptive feed-forward
power amplifier design,” in Microwave Symposium Digest, 2003 IEEE MTT-S International,vol. 2, June 2003, pp. 1323–1326 vol.2.
[7] S. Chung, J. W. Holloway, and J. L. Dawson, “Open-loop digital predistortion
using cartesian feedback for adaptive rf power amplifier linearization,” in 2007
IEEE/MTT-S International Microwave Symposium, June 2007, pp. 1449–1452.
[8] S. Choi, E. R. Jeong, and Y. H. Lee, “A direct learning structure for adaptive
polynomial-based predistortion for power amplifier linearization,” in 2007 IEEE
65th Vehicular Technology Conference - VTC2007-Spring, April 2007, pp. 1791–1795.
[9] Z. Li, J. Kuang, and N. Wu, “Direct learning predistorter with a new loop delay
compensation algorithm,” in Vehicular Technology Conference (VTC Spring),
2012 IEEE 75th, May 2012, pp. 1–5.
[10] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina,“A robust digital baseband predistorter constructed using memory polynomials,”IEEE Transactions on Communications, vol. 52, no. 1, pp. 159–165, Jan 2004.
[11] M. Y. Cheong, S. Werner, M. J. Bruno, J. L. Figueroa, J. E. Cousseau, and R. Wichman,
“Adaptive piecewise linear predistorters for nonlinear power amplifiers with memory,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, no. 7, pp. 1519–1532, July 2012.
[12] L. Ding, R. Raich, and G. T. Zhou, “A hammerstein predistortion linearization design
based on the indirect learning architecture,” in Acoustics, Speech, and Signal
Processing (ICASSP), 2002 IEEE International Conference on, vol. 3, May 2002,
pp. III–2689–III–2692.
[13] L. Ding, G. T. Zhou, D. R. Morgan, Z. Ma, J. S. Kenney, J. Kim, and C. R. Giardina,“Memory polynomial predistorter based on the indirect learning architecture,” in Global Telecommunications Conference, 2002. GLOBECOM ’02. IEEE, vol. 1,Nov 2002, pp. 967–971 vol.1.
[14] Z. Zeng, X. Sun, R. Lv, and Z. Yang, “Open-loop digital baseband predistortion based on polynomials,” in Computer Science and Information Engineering, 2009
WRI World Congress on, vol. 6, March 2009, pp. 194–197.
[15] Y. Ding, H. Ohmori, and A. Sano, “Adaptive predistortion for high power amplifier
with linear dynamics,” in Circuits and Systems, 2004. MWSCAS ’04. The 2004 47th Midwest Symposium on, vol. 3, July 2004, pp. iii–121–4 vol.3.
[16] C. Rapp, “Effects of HPA-nonlinearity on a 4-DPSK/OFDM-signal for a digital
sound broadcasting signal,” in ESA Special Publication, ser. ESA Special Publication,
P. S. Weltevreden, Ed., vol. 332, Oct. 1991.
[17] A. Y. Kibangou and G. Favier, “Wiener-hammerstein systems modeling using diagonal volterra kernels coefficients,” IEEE Signal Processing Letters, vol. 13,
no. 6, pp. 381–384, June 2006.
[18] P. Gilabert, G. Montoro, and E. Bertran, “On the wiener and hammerstein models
for power amplifier predistortion,” in 2005 Asia-Pacific Microwave Conference Proceedings, vol. 2, Dec 2005, pp. 4 pp.–.
[19] D. R. Morgan, Z. Ma, J. Kim, M. G. Zierdt, and J. Pastalan, “A generalized memory polynomial model for digital predistortion of rf power amplifiers,” IEEE Transactions on Signal Processing, vol. 54, no. 10, pp. 3852–3860, Oct 2006.
[20] B. Feuvrie, M. Diop, and Y. Wang, “Efficient baseband digital predistorter using lut for power amplifier (pa) with memory effect,” American Journal of Electrical
and Electronic Engineering, vol. 2, no. 3, pp. 72–81, 2014.
[21] H. G. E and S. Osindero, “A fast learning algorithm for deep belief nets,” Neural computation, 2006, 18(7): 1527-1554.
[22] Wikipedia,Convolutional neural network,
https://en.wikipedia.org/wiki/Convolutional_neural_network, accessed 2021.
[23] C. Olah ,Understanding LSTM Networks,
http://colah.github.io/posts/2015-08-Understanding-LSTMs/,accessed 2021.
[24] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, 9(8):1735–1780, 1997.
[25] J. Chung, C. Gulcehre, K. Cho, et al. “Empirical evaluation of gated recurrent neural networks on sequence modeling,” Neural and Evolutionary Computing, 2014.
[26] C. Eun and E. J. Powers, “A predistorter design for a memory-less nonlinearity preceded by a dynamic linear system” in Global Telecommunications Conference,
1995. GLOBECOM ’95., IEEE, vol. 1, Nov 1995, pp. 152–156 vol.1.
[27] Deepmala Phartiyal, “LSTM-Deep Neural Networks based Predistortion
Linearizer for High Power Amplifiers” in 2019 National Conference on Communications (NCC)