| 研究生: |
許善軍 Shan-Chun Hsu |
|---|---|
| 論文名稱: |
於圖案化鍺模板上選擇性成長之砷化銦鎵鰭式場效電晶體研製 Development of InGaAs Fin Field-Effect Transistors Selectively Grown on Patterned Ge Template |
| 指導教授: |
綦振瀛
Jen-Inn Chyi |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 鰭式場效電晶體 、砷化銦鎵 、鍺 |
| 外文關鍵詞: | FinFET, InGaAs, Ge |
| 相關次數: | 點閱:19 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
現今矽晶圓廠的生產技術已發展至7奈米節點,電晶體性能已接近物理極限,因此尋找比矽基材料系統更快速且更省電的材料一直以來為半導體界的研究重點。在眾多選項中,具有高電子遷移率的砷化銦鎵與具有高電洞遷移率的鍺,被認為是製作n與p型通道電晶體最具潛力的材料組合之一。因此將兩材料整合於同一矽基板上是未來量產化的關鍵技術之一。本研究率先開發於矽基板上製備鍺模板,再以有機金屬化學蒸氣沉積法(MOCVD)選擇性成長砷化銦鎵於其上,並據以製作鰭式場效電晶體(FinFET)。
本論文研究首先以塊材(Bulk)砷化銦鎵磊晶片經蝕刻方式製作鰭式場效電晶體,以驗證及優化製程,作為選擇性磊晶元件之基礎。此研究製備之n型InGaAs FinFET於通道寬度為40奈米、閘極長度為80奈米尺寸時,最大汲極電流密度為250 µA/µm,電流開關比(Ion/Ioff)為104,次臨界擺幅(S.S.)為331 mV/dec,閘極漏電密度約可低於1×10-4 µA/µm。在FinFET製程技術建立後,便分別製作於矽基板上選擇性成長砷化銦鎵鰭式場效電晶體與鍺鳍式場效電晶體。此二元件之通道寬度與閘極長度分別為100 nm/400 nm與80 nm/400 nm,所量得最大汲極電流密度各為118 µA/µm與7.5 µA/µm,電流開關比分別為101與104,次臨界擺幅(S.S.)則為650 mV/dec與90 mV/dec,而閘極漏電密度兩者皆是低於1×10-4 µA/µm。此研究結果已為異質整合三五族與鍺鰭式場效電晶體於矽基板上之構想建立了基礎技術,在優化選擇性成長技術與閘極製程技術後,應可提升汲極電流密度、降低次臨界擺幅、提升電流開關比。
Nowadays, Si CMOS manufacturing technology has come to 7 nm technology node and approached its physical limit. New materials that offer high carrier mobility and lead to low power consumption are the focus of research in semiconductor field. For example, III-V compound semiconductor, Among the potential options, InGaAs and Ge, which has high electron and hole mobility, respectively, are one of the best chooses for n-channel and p-channel materials. For the purpose of mass production, heterogenerous integration of InGaAs and Ge on Si substrate monolithicallly is essential. This work demonstrates n-channel fin field-effect transistors (FinFETs) based on InGaAs selectively grown in Ge trench on Si wafers.
In this study, FinFETs based on bulk InGaAs/InAlAs epiwafers are fabricated for process development and optimization in the begining. These InGaAs FinFETs exhibit a maximum drain current density of 250 µA/µm, an Ion/Ioff ratio of 104, a subthreshold swing (S.S.) of 331 mV/dec and a gate leakage current below 1×10-4 µA/µm. Devices are then fabricated based on the InGaAs nanostructure selectively grown on patterned Ge templates, which are grown on silicon-on-insulator (SOI) wafers. InGaAs and Ge FinFETs have a channel width and gate length of 100 nm/400 nm and 80 nm/400 nm, respectively. The n-InGaAs FinFETs and Ge FinFETs exhibit an Ion/Ioff ratio of 10 and 104, a maximum drain current density of 118 µA/µm and 7.5 µA/µm, and a subthreshold swing (S.S.) of 650 mV/dec and 90 mV/dec, respectively. The gate leakage current density of both InGaAs and Ge FinFET is below 1×10-4 µA/µm.
This work successfully demonstrates the heterogenerous integration of GaAs and Ge FinFETs on Si substrates. Better device performance can be obtained by improving the selective growth and high-k gate-stack processes.
[1] S. Takagi, S. H. Kim, M. Yokoyama, R. Zhang, N. Taoka, Y. Urabe, T. Yasuda, H. Yamada,O. Ichikawa, N. Fukuhara, M. Hata and M. Takenaka
"High mobility CMOStechnologies using III-V/Ge channels on Si platform," Solid-State Electron., 88, 2, 2013.
[2] S. Takagi, S. H. Kim, M. Yokoyama, R. Zhang, N. Taoka, Y. Urabe, T. Yasuda, H. Yamada,O. Ichikawa, N. Fukuhara, M. Hata and M. Takenaka
"High mobility CMOStechnologies using III-V/Ge channels on Si platform," Solid-State Electron., 88, 2, 2013.
[3] D. J. Smith, J. Lu, T. Aoki, M. R. McCartney, and Y.-H. Zhang, "Observation of compound semiconductors and heterovalent interfaces using aberration-corrected scanning transmission electron microscopy," Journal of Materials Research, vol. 32, pp. 921-927, 2016.
[4] Niamh Waldron , Clement Merckling, Lieve Teugels, Patrick Ong, Farid Sebaai, Kathy Barla,Nadine Collaert and Voon-Yew (Aaron) Thean., "Replacement fin processing for III–V on Si: From FinFets to nanowires" in Solid-State Electron, 81, 91, 2016.
[5] L. Czornomaz, E. Uccelli, M. Sousa, V. Deshpande, V. Djara, D. Caimi, M. D. Rossell, R. Erni and J. Fompeyrine, "Confined Epitaxial Lateral Overgrowth (CELO):A Novel Concept for Scalable Integration of CMOS-compatible InGaAs-on-insulator MOSFETs on Large-Area Si Substrates," in VLSI Technology (VLSIT), 2015 Symposium on, pp. 13-13, 2015.
[6] Gerben Doornbos, Martin Holland, Georgios Vellianitis, Mark J. H. van Dal, Blandine Duriez, Richard Oxland, Aryan Afzalian, Ta-Kun Chen, Gordon Hsieh, Matthias Passlack, and Yee-Chia Yeo, Member, " High-Performance InAs Gate-All-Around Nanowire MOSFETs on 300 mm Si Substrates," in Electron Devices Society (EDS), pp. 1-3, 2016.
[7] Cezar B. Zota, Fredrik Lindelow, Lars-Erik Wernersson and Erik Lind., "InGaAs Tri-gate MOSFETs with Record On-Current," in Electron Devices Meeting (IEDM), 2017 IEEE International, pp. 3.2.1- 3.2.4, 2016.
[8] A. Vardi, X. Zhao and J. A. del Alamo., " Quantum-size effects in sub 10-nm fin width InGaAs FinFETs," in Electron Devices Meeting (IEDM), 2017 IEEE International, pp. 31.3. 2-31.3. 4, 2015.
[9] Fares Chouchane, Bassem Salem, Guillaume Gay, Mickael Martin, Erwine Pargon, Franck Bassani, SandrineArnaud, Sylvain David, Reynald Alcotte, Sébastien Labau, Jérémy Moeyart, and Thierry Baron, " Sub-10 nm plasma nanopatterning of InGaAs with nearly vertical and smooth sidewallsfor advanced n-fin field effect transistors on silicon," J. Vac. Sci. Technol. Vol. 35, No. 2, 2017.
[10] Jae Su Yu and Yong Tak Lee, " Parametric reactive ion etching of InP
using Cl2 and CH4 gases: effects of H2 andAr addition," SEMICONDUCTOR SCIENCE AND TECHNOLOGY",
pp. 230-236,2002.
[11] 許乃蓉, "鍺與砷化銦鎵鰭式場效電晶體共閘極製程之開發," 國立中央大學, 2017.
[12] 鄒承翰, "開發具鈦/鋁矽銅歐姆接觸之砷化銦鎵金氧半場效電晶體, " 國立中央大學, 2017.
[13] S. Mathew, L. K. Bera, N. Balasubramanian, M. S. Joo, and B. J. Cho, “Channel mobility degradation and charge trapping in high-k/metal gate NMOSFETs,” Thin Solid Films, vol. 462-463, pp. 11-14, 2004.
[14] W. Zhu, J. P. Han, and T. P. Ma, “Mobility Measurement and Degradation Mechanisms of MOSFETs Made With Ultrathin High-k Dielectrics,” IEEE Transactions on Electron Devices, vol. 51, no. 1, pp. 98-105, 2004.
[15] F. Wang, S. Yip, N. Han, K. Fok, H. Lin, J. J. Hou, G. Dong, T. Hung, K. S. Chan, and J. C. Ho, “Surface roughness induced electron mobility degradation in InAs nanowires,” Nanotechnology, vol. 24, no. 37, pp. 375202, Sep 20, 2013.
[16] C. H. Lee, T. Nishimura, T. Tabata, C. Lu, W. F. Zhang, K. Nagashio, and A. Toriumi, “Reconsideration of electron mobility in Ge n-MOSFETs from Ge substrate side- Atomically flat surface formation, layer-by-layer oxidation, and dissolved oxygen extraction,” IEEE International Electron Devices Meeting, pp. 2.3.1-2.3.4, 2013.