跳到主要內容

簡易檢索 / 詳目顯示

研究生: 游明縑
Ming-Qian You
論文名稱: 不同試驗方法對黏土壓縮與壓密性質之影響
指導教授: 黃俊鴻
Jing-Hung Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 88
語文別: 中文
論文頁數: 123
中文關鍵詞: 單向度壓密試驗壓縮指數二次壓縮指數壓密係數
外文關鍵詞: Oedometer Test, Compression Index, Secondary Compression
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對各種黏性土壤進行一系列室內壓密試驗,探討不同應
    力延時、不同擾動程度,以及不同應力增量比下,土壤壓縮與壓密行
    為與標準單向度壓密試驗結果之差異。由實驗結果可知,短應力延時
    試驗所得之壓縮與壓密參數值,皆與標準單向度試驗相差甚小,唯一
    較為離散之參數為二次壓縮指數,此乃短應力延時試驗之二次壓縮行
    為發展尚未穩定所致,但若利用Mesri 之c C Ca 為常數之觀念,則可
    避免此一問題。因此短應力延時壓密試驗實值得吾人進一步運用,並
    能有效地改善標準壓密試驗耗時過長之缺點。
    根據不同性質黏土之壓密試驗結果及相關文獻資料進行整理分
    析,提出適用範圍極廣之黏土壓縮及壓密參數迴歸方程式,並將這些
    迴歸式與其他學者提出之統計結果進行比較。統計結果顯示壓縮指數
    及再壓指數與土樣之初始孔隙比、自然含水量及液性限度具有良好之
    線性關係,而c C Ca 及壓密係數則隨塑性指數變化, k C 與初始孔隙比
    亦呈正相關。另一方面,本研究亦比較各種參數取決法於求取結果之
    差異,並探討其對沉陷分析之影響。上述研究成果可供爾後進行黏土
    壓密及沉陷分析選擇試驗與壓縮及壓密參數之參考。


    This research conducted a series of consolidation tests on clays with
    different plasticity index. Its purpose is to investigate the compression
    and consolidation behavior under different loading duration, loading
    increment and sample disturbance and the differences with that from
    standard consolidation test. Test results show that the compression and
    consolidation parameters of short loading duration test are close to those
    from standard test except for the secondary consolidation coefficient. It
    was found that short loading duration test can replace the standard test in
    reducing long testing time for low plasticity clay.
    Statistical correlations of the compression and consolidation
    parameters with physical index of clay are established for alluvial clays
    based on the test results and data from paper reviews. The compression
    and consolidation parameters have good linear correlation with initial
    void ratio, natural water content, and liquid limit of clay. Furthermore,
    variations of Cá/Cc and cv with plasticity, and Ck with initial void ratio are
    presented. The differences of the methods in determining parameters are
    also compared and discussed. The research results provide a helpful guide
    to select test procedure and parameters for consolidation and settlementanalysis of clay.

    中文摘要.........................................................................................Ⅰ 英文摘要.........................................................................................Ⅱ 目錄..................................................................................................Ⅲ 圖目錄..............................................................................................Ⅵ 表目錄..............................................................................................Ⅹ 符號說明.....................................................................................ⅩⅠ 第一章緒論.....................................................................................1 1-1 研究動機及目的.......................................................................... 1 1-2 研究流程...................................................................................... 1 1-3 論文內容...................................................................................... 2 第二章文獻回顧............................................................................4 2-1 黏土壓縮與壓密性質................................................................... 4 2-2 預壓密應力.................................................................................. 5 2-2-1 預壓密應力之決定方法................................................... 6 (A)Casagrande 法......................................................................... 6 (B)Schmertmann 法...................................................................... 7 (C)Holtz & Kovacs 法.................................................................. 9 (D)單位體積應變能法(Onitsuka 法)..........................................10 2-2-2 影響決定預壓密應力之因素............................................13 (A)試體擾動之影響....................................................................14 (B)加載應力延時之影響............................................................14 (C)應力增量比之影響................................................................15 2-3 壓縮指數與再壓指數..................................................................16 2-4 壓縮係數.....................................................................................20 2-5 體積壓縮係數.............................................................................20 2-6 壓密係數.....................................................................................22 2-6-1 垂直向壓密係數.............................................................22 (A)Casagrande 對數時間調整法.................................................22 (B)Taylor 平方根時間調整法......................................................23 (C) Sridharan 法..........................................................................25 (D)Robinson 法...........................................................................27 2-6-2 各種壓密係數決定法之綜合評述.....................................28 2-6-3 影響垂直向壓密係數之因素............................................31 (A)應力狀態...............................................................................31 (B)應力增量比...........................................................................32 (C)不同壓密係數之決定方法.....................................................32 (D)應力延時...............................................................................33 2-6-4 水平向壓密係數...............................................................33 2-7 二次壓縮行為.............................................................................33 2-7-1 二次壓縮沉陷...................................................................33 2-7-2 二次壓縮指數...................................................................35 2-7-3 影響二次壓縮之因素.......................................................37 (A)應力延時...............................................................................37 (B)試體擾動...............................................................................38 (C)應力增量比...........................................................................38 (D)應力狀態...............................................................................39 (E)不同試體高度........................................................................40 第三章試驗方法、試驗儀器與試驗土樣................................41 3-1 不同試驗方法及程序..................................................................41 3-2 標準單向度壓密試驗..................................................................42 (A)試驗儀器與設備....................................................................42 (B)試驗土樣與試體準備............................................................43 (C)試驗內容與步驟....................................................................46 3-3 短應力延時壓密試驗..................................................................48 (A)試驗儀器與設備....................................................................49 (B)試驗土樣與試體準備............................................................49 (C)試驗內容與步驟....................................................................49 3-4 小應力增量比壓密試驗..............................................................49 (A)試驗儀器與設備....................................................................50 (B)試驗土樣與試體準備............................................................50 (C)試驗內容與步驟....................................................................50 3-5 嚴重擾動土樣壓密試驗..............................................................50 (A)試驗儀器與設備....................................................................51 (B)試驗土樣與試體準備............................................................51 (C)試驗內容與步驟....................................................................51 3-6 長應力延時壓密試驗..................................................................51 (A)試驗儀器與設備....................................................................52 (B)試驗土樣與試體準備............................................................52 (C)試驗內容與步驟....................................................................52 第四章室內試驗結果與整理.....................................................53 4-1 不同試驗方法與程序之參數整理...............................................53 4-1-1 壓縮參數..........................................................................53 (A)壓縮指數.............................................................................53 (B)再壓指數.............................................................................57 (C)二次壓縮指數......................................................................60 (D)體積壓縮係數......................................................................63 (E)預壓密應力............................................................................69 4-1-2 壓密參數..........................................................................74 (A)壓密係數.............................................................................74 (B)滲透係數.............................................................................85 4-2 不同種類土壤之參數整理..........................................................88 4-2-1 壓縮參數..........................................................................89 (A)壓縮指數.............................................................................89 (B)再壓指數.............................................................................98 (C)二次壓縮指數....................................................................102 4-2-2 壓密參數........................................................................108 (A)壓密係數...........................................................................108 (B)滲透係數............................................................................. 112 第五章結論與建議....................................................................114 5-1 結論........................................................................................... 114 5-1-1 不同試驗方法與標準單向度壓密試驗之比較................. 114 (A)短應力延時試驗.................................................................. 114 (B)嚴重擾動土樣試驗.............................................................. 115 (C)小應力增量比試驗.............................................................. 115 (D)長應力延時壓密試驗.......................................................... 116 5-1-2 不同性質土樣之試驗結論............................................... 117 (A)壓縮指數與再壓指數...................................................... 117 (B)二次壓縮指數.................................................................... 117 (C)壓密係數........................................................................... 118 (D)滲透係數............................................................................. 118 5-2 建議........................................................................................... 118 參考文獻.......................................................................................120

    1. 劉醇棟,「基隆河黏土垂直排水帶行為及壓密性質之研究」,碩
    士論文,國立中央大學土木工程學系,中壢(1998)。
    2. 中興工程顧問社,「捷運淡水線北投機廠(含R28 車站)擴大全
    區長期監測計畫」,台北市政府捷運工程局(1999)。
    3. American Society for Testing and Materials, D2435-90: Standard Test
    Method for One-Dimensional Consolidation Properties of Soils, pp.
    314-323 (1990).
    4. Akai, K., Kamon, M., Sano, I. and Soga, K., “Long-term
    Consolidation Characteristic of Diluvial Clay in Osaka Bay,” Soils
    and Foundations, Vol. 31, No. 4, pp. 61-74 (1991).
    5. Balasubramaniam, A. S., Gurung, S. B., Kusakabe, O. and Kim, S. R.,
    “On the Plastic Volumetric Strain of Bangkok Clay,” Proc. of the 11th
    southeast Asian Geotechnical Conference, pp. 73-78, Singapore
    (1993).
    6. Bergado, D. T., Asakami, H., Alfaro, M. C. and Balasubramaniam, A.
    S., “Smear Effects of Vertical Drains on Soft Bangkok Clay,” Journal
    of Geotechnical Engineering, Vol. 117, No. 10, pp. 1509-1530 (1991).
    7. Berre, T. and Iversen, K., “Oedometer Tests with Different Specimen
    Heights on a Clay Exhibiting Large Secondary Compression,”
    Geotechnique, Vol. 22, No. 1, pp. 53-70 (1972).
    8. Berry, P. L., “Application of Consolidation Theory for Peat to the
    Design of a Reclamation Scheme by Preload,” The Geological Society,
    Vol. 16, pp. 103-112 (1983).
    9. Casagrande, A., “The Determination of The Preconsolidation Load
    and Its Practical Significance,” Proc. 1st Int. Conf. Soil Mech. Found.
    Eng., Cambridge, Vol. 3, pp. 60-64 (1936).
    10. Crawford, C. B., “Interpretation of The Consolidation Test,” Journal
    of Soil Mechanics and Foundations Division, ASCE, Vol. 90, No.
    SM5, pp. 87-102 (1964).
    11. Crawford, C. B. and Sutherland, J. G., “The Empress Hotel, Victoria,
    British Columbia. Sixty-Five Years of Foundation Settlement,”
    Canadian Geotechnical Journal, Vol. 8, pp. 77-93 (1971).
    12. Fox, P. J. and Edil, T. B., “Effects of Stress and Temperature on
    Secondary Compression of Peat,” Can. Geotech., Vol. 33, pp. 405-415
    (1996).
    13. Frydman, S., Komornik, U. and Komornik, A., “Geotechnical
    Properties of Israeli Coastal Clays,” Proc. of the 9th Asian Regional
    Conference on Soil Mechanics and Foundation Engineering, pp. 137-
    142, Bangkok, Thailand (1991).
    14. Gibson, R. E. and Lo, K. Y., “A Theory of Consolidation for Soils
    Exhibiting Secondary Compression,” Norwegian Geotech. Inst., Pub.
    No. 41 (1961).
    15. Gutub, M. Z. A. and Khan, A. M., “Drainage and Compressibility
    Characteristics of Madinah Clay with Sand Drains,” Proc. of the 11th
    southeast Asian Geotechnical Conference, pp. 349-355, Singapore
    (1993).
    16. Hansbo, S., “Consolidation of Clay by Band-shaped Prefabricated
    Drains,” Ground Engineering, Vol. 12, No. 5, pp. 16-25 (1979).
    17. Holtz, R. D. and Kovacs, W. D., An Introduction to Geotechnical
    Engineering, Prentice-Hall, New Jersey (1981).
    18. Hossain, D., “Discussion: Limitations of Conventional Analysis of
    Consolidation Settlement,” Journal of Geotechnical Engineering, Vol.
    121, pp. 514-515 (1995).
    19. Katagiri, G., “The Relationship Between c C and a C of Clay,” Proc.
    of the 11th southeast Asian Geotechnical Conference, pp. 121-124,
    Singapore (1993).
    20. Mesri, G., Stark, T. D., Ajlouni, and Chen, C. S., “Secondary
    Compression of Peat with or without Surcharging,” Journal of
    Geotechnical and Geoenvironmental Engineering, ASCE, pp. 411-421
    (1997).
    21. Mesri, G., “Coefficient of Secondary Compression,” Journal of Soil
    Mechanics and Foundations Division, ASCE, Vol. 99, No. SM1, pp.
    123-137 (1973).
    22. Mesri, G. and Rokhsar, A., “Theory of Consolidation for Clays,”
    Journal of Geotechnical Engineering Division, ASCE, Vol. 100, No.
    GT8, pp. 889-904 (1974).
    23. Mesri, G., Rokhsar, A. and Bohor, B. F., “Composition and
    Compressibility of Typical Samples of Mexico City Clay,”
    Geotechnique, Vol. 25, No. 3, pp. 527-554 (1975).
    24. Mesri, G. and Godlewski, P.M., “Time- and Stress-compressibility
    Interrelationship,” Journal of Geotechnical Engineering Division,
    ASCE, Vol. 103, No. GT5, pp. 417-430 (1977).
    25. Mesri, G. and Choi, Y. K., “Discussion: Strain Rate Behavior of Saint-
    Jean-Vianney Clay,” Canadian Geotechnical Journal, Vol. 16, No. 1,
    pp. 52-66 (1979).
    26. Mesri, G. and Tavenas, F., “Discussion: Permeability and
    Consolidation of Normally Consolidated Soils,” Journal of
    Geotechnical Engineering Division, ASCE, Vol. 109, No. GT6, pp.
    873-878 (1983).
    27. Mesri, G. and Choi, Y. K., “Settlement Analysis of Embankments on
    Soft Clays,” Journal of Geotechnical Engineering, ASCE, Vol. 111,
    No. 4, pp. 441-464 (1985).
    28. Mesri, G. and Feng, T. W., “Surcharging to Reduce Secondary
    Settlements,” International Conference on Geotech. Engrg. for Coastal
    Development-Theory and Practice on Soft Ground. <<GEOCOAST>>,
    pp. 1-6, Yokohama, Japan (1991).
    29. Newland, P. L. and Allely, B. H., “A Study of the Consolidation
    Characteristics of a Clay,” Geotechnique, Vol. 10, pp. 62-74 (1960).
    30. Nagaraj, T. S. and Srinivasa Murthy, B. R., “Technical Note:
    Prediction of the Preconsolidation Pressure and Recompression Index
    of Soils,” Geotechnical Testing Journal, Vol. 8, No. 4, pp. 199-202
    (1985).
    31. Narasimha Raju, P. S. R., Pandian, N. S. and Nagaraj, T. S., “Analysis
    and Estimation of the Coefficient of Consolidation,” Geotechnical
    Testing Journal, Vol. 18, No. 2, pp. 252-258 (1995).
    32. Olson, R. E. and Ladd, C. C., “One-dimensional Consolidation
    Problems,” Journal of Geotechnical Engineering Division, ASCE, Vol.
    105, No. GT1, pp. 11-30 (1979).
    33. Onitsuka, K., Hong, Z., Hara, Y. and Yoshitake, S., “Interpretation of
    Oedometer Test Data for Natural Clay,” Soils and Foundations, Vol.
    35, No. 3, pp. 61-70 (1995).
    34. Prasad, Y. V. S. N. and Rao, S. N., “A New Two Point Method of
    Obtaining Cv from a Consolidation Test,” Canadian Geotechnical
    Journal, Vol. 32, pp.741-746 (1995).
    35. Quigley, R. M. and Ogunbadejo, T. A., “Clay Layer Fabric and
    Oedometer Consolidation of a Soft Varved Clay,” Canadian
    Geotechnical Journal, Vol. 9, pp 165-175 (1972).
    36. Robinson, R. G., “Technical Note: Consolidation Analysis with Pore
    Water Pressure Measurements,” Geotechnique, Vol. 49, No. 1, pp.
    127-132 (1999).
    37. Robinson, R. G. and Allman, M. M, “Technical Note: Determination
    of Coefficient of Consolidation from Early Stage of Log t Plot,”
    Geotechnical Testing Journal, Vol. 19, No. 3, pp. 316-320 (1996).
    38. Schmertmann, J. H., “The Undisturbed Consolidation Behavior of
    Clay,” Transactions, ASCE, Vol. 120, pp. 1201-1227 (1955).
    39. Sirdharan, A., Rao, S. M. and Murthy, N. S., “Compressbility
    Behaviour of Homoionized Bentonites,” Geotechnique, Vol. 36, No. 4,
    pp. 551-564 (1986).
    40. Sridharan, A., Murthy, N. S. and Prakash, K., “Rectangular Hyperbola
    Method of Consolidation Analysis,” Geotechnique, Vol. 37, No. 3, pp.
    355-368 (1987).
    41. Sridharan, A., Sivapullaiah, P. V. and Stalin, V. K., “Effect of Short
    Duration of Load Increment on the Compressibility of Soils,”
    Geotechnical Testing Journal, Vol. 17, No. 4, pp. 488-496 (1994).
    42. Sridharan, A., Prakash, K., and Asha, S. R., “Consolidation Behavior
    of Soils,” Geotechnical Testing Journal, Vol. 18, No. 1, pp. 58-68
    (1995).
    43. Sridharan, A., Prakash, K., and Asha, S. R., “Consolidation Behavior
    of Clayey Soils under Radial Drainage,” Geotechnical Testing Journal,
    Vol. 19, No. 4, pp. 421-431 (1996).
    44. Taylor, D. W., Fundamentals of Soil Mechanics, Wiley, New York
    (1948).
    45. Tavenas, F., Jean., P., Leblond, P. and Leroueil, S., “The Permeability
    of Natural Soft Clays. Part Ⅱ . Permeability Characteristics,”
    Canadian Geotechnical Journal, Vol. 20, No. 4, pp645-660 (1983).
    46. Terzaghi, K., Theoretical Soil Mechanics, Wiley, New York (1943).
    47. Todo, H., Sagae, T. and Adachi, K., “Compressibility Model for
    Highly Sensitive Singapore Clay,” Proc. of the 11th southeast Asian
    Geotechnical Conference, pp. 251-256, Singapore (1993).
    48. Tsuchida, T., “A New Concept of p log e - Relationship for Clays,”
    Proc. of the 9th Asian Regional Conference on Soil Mechanics and
    Foundation Engineering, pp. 87-90, Bangkok, Thailand (1991).
    49. Wei, J., Ho, S. K. and Lourdesamy, I., “Use of Vertical Drains to
    Improve Soft Clays at the Woodlands Reclamation Project,
    Singapore,” Proc. of the 11th southeast Asian Geotechnical Conference,
    pp. 421-427, Singapore (1993).

    QR CODE
    :::