| 研究生: |
游明縑 Ming-Qian You |
|---|---|
| 論文名稱: |
不同試驗方法對黏土壓縮與壓密性質之影響 |
| 指導教授: |
黃俊鴻
Jing-Hung Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 88 |
| 語文別: | 中文 |
| 論文頁數: | 123 |
| 中文關鍵詞: | 單向度壓密試驗 、壓縮指數 、二次壓縮指數 、壓密係數 |
| 外文關鍵詞: | Oedometer Test, Compression Index, Secondary Compression |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究針對各種黏性土壤進行一系列室內壓密試驗,探討不同應
力延時、不同擾動程度,以及不同應力增量比下,土壤壓縮與壓密行
為與標準單向度壓密試驗結果之差異。由實驗結果可知,短應力延時
試驗所得之壓縮與壓密參數值,皆與標準單向度試驗相差甚小,唯一
較為離散之參數為二次壓縮指數,此乃短應力延時試驗之二次壓縮行
為發展尚未穩定所致,但若利用Mesri 之c C Ca 為常數之觀念,則可
避免此一問題。因此短應力延時壓密試驗實值得吾人進一步運用,並
能有效地改善標準壓密試驗耗時過長之缺點。
根據不同性質黏土之壓密試驗結果及相關文獻資料進行整理分
析,提出適用範圍極廣之黏土壓縮及壓密參數迴歸方程式,並將這些
迴歸式與其他學者提出之統計結果進行比較。統計結果顯示壓縮指數
及再壓指數與土樣之初始孔隙比、自然含水量及液性限度具有良好之
線性關係,而c C Ca 及壓密係數則隨塑性指數變化, k C 與初始孔隙比
亦呈正相關。另一方面,本研究亦比較各種參數取決法於求取結果之
差異,並探討其對沉陷分析之影響。上述研究成果可供爾後進行黏土
壓密及沉陷分析選擇試驗與壓縮及壓密參數之參考。
This research conducted a series of consolidation tests on clays with
different plasticity index. Its purpose is to investigate the compression
and consolidation behavior under different loading duration, loading
increment and sample disturbance and the differences with that from
standard consolidation test. Test results show that the compression and
consolidation parameters of short loading duration test are close to those
from standard test except for the secondary consolidation coefficient. It
was found that short loading duration test can replace the standard test in
reducing long testing time for low plasticity clay.
Statistical correlations of the compression and consolidation
parameters with physical index of clay are established for alluvial clays
based on the test results and data from paper reviews. The compression
and consolidation parameters have good linear correlation with initial
void ratio, natural water content, and liquid limit of clay. Furthermore,
variations of Cá/Cc and cv with plasticity, and Ck with initial void ratio are
presented. The differences of the methods in determining parameters are
also compared and discussed. The research results provide a helpful guide
to select test procedure and parameters for consolidation and settlementanalysis of clay.
1. 劉醇棟,「基隆河黏土垂直排水帶行為及壓密性質之研究」,碩
士論文,國立中央大學土木工程學系,中壢(1998)。
2. 中興工程顧問社,「捷運淡水線北投機廠(含R28 車站)擴大全
區長期監測計畫」,台北市政府捷運工程局(1999)。
3. American Society for Testing and Materials, D2435-90: Standard Test
Method for One-Dimensional Consolidation Properties of Soils, pp.
314-323 (1990).
4. Akai, K., Kamon, M., Sano, I. and Soga, K., “Long-term
Consolidation Characteristic of Diluvial Clay in Osaka Bay,” Soils
and Foundations, Vol. 31, No. 4, pp. 61-74 (1991).
5. Balasubramaniam, A. S., Gurung, S. B., Kusakabe, O. and Kim, S. R.,
“On the Plastic Volumetric Strain of Bangkok Clay,” Proc. of the 11th
southeast Asian Geotechnical Conference, pp. 73-78, Singapore
(1993).
6. Bergado, D. T., Asakami, H., Alfaro, M. C. and Balasubramaniam, A.
S., “Smear Effects of Vertical Drains on Soft Bangkok Clay,” Journal
of Geotechnical Engineering, Vol. 117, No. 10, pp. 1509-1530 (1991).
7. Berre, T. and Iversen, K., “Oedometer Tests with Different Specimen
Heights on a Clay Exhibiting Large Secondary Compression,”
Geotechnique, Vol. 22, No. 1, pp. 53-70 (1972).
8. Berry, P. L., “Application of Consolidation Theory for Peat to the
Design of a Reclamation Scheme by Preload,” The Geological Society,
Vol. 16, pp. 103-112 (1983).
9. Casagrande, A., “The Determination of The Preconsolidation Load
and Its Practical Significance,” Proc. 1st Int. Conf. Soil Mech. Found.
Eng., Cambridge, Vol. 3, pp. 60-64 (1936).
10. Crawford, C. B., “Interpretation of The Consolidation Test,” Journal
of Soil Mechanics and Foundations Division, ASCE, Vol. 90, No.
SM5, pp. 87-102 (1964).
11. Crawford, C. B. and Sutherland, J. G., “The Empress Hotel, Victoria,
British Columbia. Sixty-Five Years of Foundation Settlement,”
Canadian Geotechnical Journal, Vol. 8, pp. 77-93 (1971).
12. Fox, P. J. and Edil, T. B., “Effects of Stress and Temperature on
Secondary Compression of Peat,” Can. Geotech., Vol. 33, pp. 405-415
(1996).
13. Frydman, S., Komornik, U. and Komornik, A., “Geotechnical
Properties of Israeli Coastal Clays,” Proc. of the 9th Asian Regional
Conference on Soil Mechanics and Foundation Engineering, pp. 137-
142, Bangkok, Thailand (1991).
14. Gibson, R. E. and Lo, K. Y., “A Theory of Consolidation for Soils
Exhibiting Secondary Compression,” Norwegian Geotech. Inst., Pub.
No. 41 (1961).
15. Gutub, M. Z. A. and Khan, A. M., “Drainage and Compressibility
Characteristics of Madinah Clay with Sand Drains,” Proc. of the 11th
southeast Asian Geotechnical Conference, pp. 349-355, Singapore
(1993).
16. Hansbo, S., “Consolidation of Clay by Band-shaped Prefabricated
Drains,” Ground Engineering, Vol. 12, No. 5, pp. 16-25 (1979).
17. Holtz, R. D. and Kovacs, W. D., An Introduction to Geotechnical
Engineering, Prentice-Hall, New Jersey (1981).
18. Hossain, D., “Discussion: Limitations of Conventional Analysis of
Consolidation Settlement,” Journal of Geotechnical Engineering, Vol.
121, pp. 514-515 (1995).
19. Katagiri, G., “The Relationship Between c C and a C of Clay,” Proc.
of the 11th southeast Asian Geotechnical Conference, pp. 121-124,
Singapore (1993).
20. Mesri, G., Stark, T. D., Ajlouni, and Chen, C. S., “Secondary
Compression of Peat with or without Surcharging,” Journal of
Geotechnical and Geoenvironmental Engineering, ASCE, pp. 411-421
(1997).
21. Mesri, G., “Coefficient of Secondary Compression,” Journal of Soil
Mechanics and Foundations Division, ASCE, Vol. 99, No. SM1, pp.
123-137 (1973).
22. Mesri, G. and Rokhsar, A., “Theory of Consolidation for Clays,”
Journal of Geotechnical Engineering Division, ASCE, Vol. 100, No.
GT8, pp. 889-904 (1974).
23. Mesri, G., Rokhsar, A. and Bohor, B. F., “Composition and
Compressibility of Typical Samples of Mexico City Clay,”
Geotechnique, Vol. 25, No. 3, pp. 527-554 (1975).
24. Mesri, G. and Godlewski, P.M., “Time- and Stress-compressibility
Interrelationship,” Journal of Geotechnical Engineering Division,
ASCE, Vol. 103, No. GT5, pp. 417-430 (1977).
25. Mesri, G. and Choi, Y. K., “Discussion: Strain Rate Behavior of Saint-
Jean-Vianney Clay,” Canadian Geotechnical Journal, Vol. 16, No. 1,
pp. 52-66 (1979).
26. Mesri, G. and Tavenas, F., “Discussion: Permeability and
Consolidation of Normally Consolidated Soils,” Journal of
Geotechnical Engineering Division, ASCE, Vol. 109, No. GT6, pp.
873-878 (1983).
27. Mesri, G. and Choi, Y. K., “Settlement Analysis of Embankments on
Soft Clays,” Journal of Geotechnical Engineering, ASCE, Vol. 111,
No. 4, pp. 441-464 (1985).
28. Mesri, G. and Feng, T. W., “Surcharging to Reduce Secondary
Settlements,” International Conference on Geotech. Engrg. for Coastal
Development-Theory and Practice on Soft Ground. <<GEOCOAST>>,
pp. 1-6, Yokohama, Japan (1991).
29. Newland, P. L. and Allely, B. H., “A Study of the Consolidation
Characteristics of a Clay,” Geotechnique, Vol. 10, pp. 62-74 (1960).
30. Nagaraj, T. S. and Srinivasa Murthy, B. R., “Technical Note:
Prediction of the Preconsolidation Pressure and Recompression Index
of Soils,” Geotechnical Testing Journal, Vol. 8, No. 4, pp. 199-202
(1985).
31. Narasimha Raju, P. S. R., Pandian, N. S. and Nagaraj, T. S., “Analysis
and Estimation of the Coefficient of Consolidation,” Geotechnical
Testing Journal, Vol. 18, No. 2, pp. 252-258 (1995).
32. Olson, R. E. and Ladd, C. C., “One-dimensional Consolidation
Problems,” Journal of Geotechnical Engineering Division, ASCE, Vol.
105, No. GT1, pp. 11-30 (1979).
33. Onitsuka, K., Hong, Z., Hara, Y. and Yoshitake, S., “Interpretation of
Oedometer Test Data for Natural Clay,” Soils and Foundations, Vol.
35, No. 3, pp. 61-70 (1995).
34. Prasad, Y. V. S. N. and Rao, S. N., “A New Two Point Method of
Obtaining Cv from a Consolidation Test,” Canadian Geotechnical
Journal, Vol. 32, pp.741-746 (1995).
35. Quigley, R. M. and Ogunbadejo, T. A., “Clay Layer Fabric and
Oedometer Consolidation of a Soft Varved Clay,” Canadian
Geotechnical Journal, Vol. 9, pp 165-175 (1972).
36. Robinson, R. G., “Technical Note: Consolidation Analysis with Pore
Water Pressure Measurements,” Geotechnique, Vol. 49, No. 1, pp.
127-132 (1999).
37. Robinson, R. G. and Allman, M. M, “Technical Note: Determination
of Coefficient of Consolidation from Early Stage of Log t Plot,”
Geotechnical Testing Journal, Vol. 19, No. 3, pp. 316-320 (1996).
38. Schmertmann, J. H., “The Undisturbed Consolidation Behavior of
Clay,” Transactions, ASCE, Vol. 120, pp. 1201-1227 (1955).
39. Sirdharan, A., Rao, S. M. and Murthy, N. S., “Compressbility
Behaviour of Homoionized Bentonites,” Geotechnique, Vol. 36, No. 4,
pp. 551-564 (1986).
40. Sridharan, A., Murthy, N. S. and Prakash, K., “Rectangular Hyperbola
Method of Consolidation Analysis,” Geotechnique, Vol. 37, No. 3, pp.
355-368 (1987).
41. Sridharan, A., Sivapullaiah, P. V. and Stalin, V. K., “Effect of Short
Duration of Load Increment on the Compressibility of Soils,”
Geotechnical Testing Journal, Vol. 17, No. 4, pp. 488-496 (1994).
42. Sridharan, A., Prakash, K., and Asha, S. R., “Consolidation Behavior
of Soils,” Geotechnical Testing Journal, Vol. 18, No. 1, pp. 58-68
(1995).
43. Sridharan, A., Prakash, K., and Asha, S. R., “Consolidation Behavior
of Clayey Soils under Radial Drainage,” Geotechnical Testing Journal,
Vol. 19, No. 4, pp. 421-431 (1996).
44. Taylor, D. W., Fundamentals of Soil Mechanics, Wiley, New York
(1948).
45. Tavenas, F., Jean., P., Leblond, P. and Leroueil, S., “The Permeability
of Natural Soft Clays. Part Ⅱ . Permeability Characteristics,”
Canadian Geotechnical Journal, Vol. 20, No. 4, pp645-660 (1983).
46. Terzaghi, K., Theoretical Soil Mechanics, Wiley, New York (1943).
47. Todo, H., Sagae, T. and Adachi, K., “Compressibility Model for
Highly Sensitive Singapore Clay,” Proc. of the 11th southeast Asian
Geotechnical Conference, pp. 251-256, Singapore (1993).
48. Tsuchida, T., “A New Concept of p log e - Relationship for Clays,”
Proc. of the 9th Asian Regional Conference on Soil Mechanics and
Foundation Engineering, pp. 87-90, Bangkok, Thailand (1991).
49. Wei, J., Ho, S. K. and Lourdesamy, I., “Use of Vertical Drains to
Improve Soft Clays at the Woodlands Reclamation Project,
Singapore,” Proc. of the 11th southeast Asian Geotechnical Conference,
pp. 421-427, Singapore (1993).