| 研究生: |
陳俊宏 Chun-Hung Chen |
|---|---|
| 論文名稱: |
不當網頁中之色情圖片偵測 Nude Image Detection on Pornographic Webpage |
| 指導教授: |
范國清
Kuo-Chin Fan |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 資訊工程學系在職專班 Executive Master of Computer Science & Information Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 支援向量機 、膚色偵測 、不當網頁偵測 、裸體影像過濾 |
| 外文關鍵詞: | support vector machine, skin color detection, Pornographic webpage detection, nude image filter |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
就網路的隱密性來說,使用者瀏覽色情網站多數為了滿足好奇心,以網路的匿名性、易得性、立即性、互動性的一些特質來說,多數原本只停留在瀏覽階段的使用者轉逐漸轉變成為影像的提供者,基於互相分享的回饋心理,加上免費網頁空間的服務,造成網路上到處都可以放置色情影像,貼圖區就是一個很明顯的例子,這是一個集合眾人貢獻的地方,沒有商業色情網站的付費機制做為第一道關卡,也不受網路內容分級的規範,任何人都可以輕易的取得色情影像,因此有必要加以防治。
本研究以膚色偵測、人臉偵測、膚色區域特徵來判斷影像內容是否為裸露之人體影像,透過網路封包擷取技術取出使用者所瀏覽網頁的URL,分析其網頁內容是否包含不適當的影像,最後產生URL黑、白名單。
It is a popular internet behavior that users browse through the pornographic websites for the purpose of satisfying their curiosity. Most users start to be image provider due to the anonymity, availability, immediacy, and interaction of internet. Pornographic images can be posted on almost every website because people tend to share whatever files they have with other users along with the offer of free homepage space service. The chart website is a typical example, which is a space with no payment mechanism and censorship. Almost all kinds of pornographic images are available on the website. It is a must to control and prevent such behavior.
In this thesis, we propose a nude image detection mechanism based on the techniques of skin color detection, face detection, and skin region detection. By utilizing internet packet, we can retrieve the user’s URL and then analyze whether the contents contain any inappropriate image. Finally, black and white URL lists will be produced to prevent the act.
[1] 2005年12月底止台灣上網人口
http://www.find.org.tw/find/home.aspx?page=many&id=134
[2] 2006年1月「台灣寬頻網路使用調查」報告
http://www.twnic.net.tw/download/200307/0601.doc
[3] 台灣教育長期追蹤資料庫電子報 第三十一期 中學生對色情資訊的接觸http://www.teps.sinica.edu.tw/TEPSNews/TEPS~News_031.pdf
[4] 網路色情犯罪之研究 http://140.113.31.110/PDF/20020221_04.pdf
[5] 中文色情網站之實證研究 http://jitas.im.cpu.edu.tw/2005-2/6.pdf
[6] 網路色情與虛擬性愛:自由與管制的難題 http://www.nhu.edu.tw/~jai/psy/sex04.pdf
[7] H. Zheng, M. Daoudi and B. Jedynak, "Blocking Adult Images Based on Statistical Skin Detection, " Electronic Letters on Computer Vision and Image Analysis, Volume 4, Number 2, pages 1-14, 2004.
[8] Google搜尋引擎 http://www.google.com.tw/
[9] Secure Computing http://www.securecomputing.com/
[10] 電腦網路內容分級處理辦法 http://gio.hyweb.com.tw/ct.asp?xItem=27203&ctNode=1874
[11] 麥當勞 - 麥當勞餐廳 http://www.mcdonalds.com.tw/locate/locate.asp
[12] 火星文的由來 http://tw.knowledge.yahoo.com/question/?qid=1105052303607
[13] M. Fleck, D. Forsyth, C. Bregler, “Finding Naked People,” 1996 European Conference on Computer Vision , Volume II, pp. 592-602, 1996.
[14] 胡冠宇(2004),“基於膚色之裸體影像偵測之研究”,碩士論文,國立成功大學工程科學系碩士班,台南。
[15] C.-Y. Jeong, J.-S. Kim, K.-S. Hong, “Appearance-Based Nude Image Detection”, ICPR (4) 2004, pp. 467-470
[16] Q.-F. Zhong, W. Zeng, G. Weu, and W.-Q. Wang, "Shape-Based Adult Image Detection," icig, pp. 150-153, Third International Conference on Image and Graphics (ICIG''04), 2004.
[17] F. Jiao, W. Gao, L. Duan and G. Cui,“Detecting Adult Image Using Multiple Features,” Info-tech and Info-net, 2001. Proceedings. ICII 2001 - Beijing. 2001 International Conferences on, IEEE, Beijing China, Vol. 3, pp. 378-383, Nov. 2001
[18] J. Yang, Z. Fu, T. Tan, W. Hu, “A Novel Approach to Detecting Adult Images”, ICPR (4) 2004, pp. 479-482
[19] H. Zheng, H. Liu, M. Daoudi, “Blocking Objectionable Images: Adult Images and Harmful Symbols”, European Community IAP 2117/27572-POESIA, ICME 2004, pp. 1223-1226
[20] 邱建明(2004),“結合影像與文字辨識的網路色情過濾”,碩士論文,國立中央大學資訊工程研究所,桃園。
[21] 何俊德(2004),“基於影像與文字特徵之網頁內容分類方法之研究”,碩士論文,朝陽科技大學資訊管理研究所,台中。
[22] World Wide Web Consortium (W3C) http://www.w3.org/
[23] Platform for Internet Content Selection (PICS) http://www.w3.org/PICS/
[24] PICS, Censorship, & Intellectual Freedom FAQ http://www.w3.org/PICS/PICS-FAQ-980126.html
[25] ICRA: Internet Content Rating Association internet http://www.icra.org/
[26] TICRF台灣網站分級推廣基金會 http://www.ticrf.org.tw/
[27] TICRF分級系統 http://www.ticrf.org.tw/chinese/html/06-rating-3.htm
[28] Mozilla Firefox Web browser http://www.mozilla.com/firefox/
[29] KKMan全功能瀏覽器 http://www.kkcity.com.tw/about/kkman.htm
[30] Microsoft Corporation http://www.microsoft.com/
[31] JZ Wang, G. Wiederhold, and O. Firschien, "System for Screening Objectionable Images Using Daubechies'' Wavelets and Color Histograms," Proc. IDMS''97, Springer-Verlag LNCS 1309, September 1997.
[32] Jayaram, S. Schmugge, MC Shin and LV Tsap, "Effect of Colorspace Transformation, the Illuminance Component, and Color Modeling on Skin Detection," cvpr, pp. 813-818, 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR''04) - Volume 2, 2004.
[33] D. Chai, A. Bouzerdoum, “A bayesian approach to skin color classification in YCbCr color space,” IEEE Proceedings on TENCON 2000, Vol. 2, pp. 421-424, Sept. 2000.
[34] V. Vezhnevets and V. Sazonov and A. Andreeva, "A Survey on Pixel-Based Skin Color Detection Techniques". Proc. Graphicon-2003, pp. 85-92, Moscow, Russia, September 2003.
[35] MATLAB® (2004). Image Processing Toolbox User''s Guide Version 5,MathWorks , 13-25
[36] Q. Huynh-Thu, M. Meguro, M. Kaneko, "Skin-Color Extraction in Images with Complex Background and Varying Illumination," wacv, p. 280, Sixth IEEE Workshop on Applications of Computer Vision, 2002.
[37] 徐維揚(2003),“門禁監控即時辨識系統之實用設計”,碩士論文,國立中央大學電機工程研究所,桃園。
[38] D. Kriegman M.-H. Yang and N. Ahuja, “Detecting Faces in Images: A Survey", IEEE Transactions on Pattern Analysis and Machine Intelligence (PAMI), vol. 24, no. 1, pp. 34-58, 2002.
[39] P. Viola, M. Jones, “Robust Real Time Object Detection,” IEEE ICCV Workshop Statistical and Computational Theories of Vision, July 2001.
[40] Open Source Computer Vision Library http://www.intel.com/technology/computing/opencv/index.htm
[41] R. Lienhart, A Kuranov, V. Pisarevsky, “Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection,” Technical report, MRL, Intel Labs, 2002.
[42] V. Vapnik, “The Nature of Statistical Learning Theory,”Springer-Verlag, 1995.
[43] S. R. Gunn, “Support Vector machines for classification and regression,” Technical Repor,t University of Southampton, 1998.
[44] LIBSVM -- A Library for Support Vector Machines http://www.csie.ntu.edu.tw/~cjlin/libsvm/
[45] Ethereal: A Network Protocol Analyzer http://www.ethereal.com/
[46] WinPcap: The Windows Packet Capture Library http://www.winpcap.org/
[47] Yahoo!奇摩 http://tw.yahoo.com/
[48] PChome Online http://www.pchome.com.tw/
[49] 蕃薯藤 http://www.yam.com/