| 研究生: |
黃慧貞 Hui-Chen Huang |
|---|---|
| 論文名稱: |
土壤有機質特異組成及含量對非離子有機化合物吸持行為之研究 The influence of distinctive soil organic matter composition and content on the sorption of nonionic organic compounds |
| 指導教授: |
李俊福
Jiunn-Fwu Lee |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 173 |
| 中文關鍵詞: | 吸附表面 、芳香性 、特定作用力 、碳黑物質 、土壤有機質 |
| 外文關鍵詞: | specific interaction, soil organic matter, High-surface-area carboneous material, sorptive surface, aromatic |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
二十世紀柒零年代以來,大量農藥及工業有機廢棄物開始危害環境,許多未經處理即排入環境中之有機污染物造成土壤污染。土壤有機質之來源互異,組成複雜,對於非離子有機污染物在土壤中之傳輸行為具有決定性之影響。
本研究分為三大主題來探討土壤有機質之特殊組成對於非離子有機污染物傳輸行為之影響。第一部份乃探討土壤有機質中之高表面積碳黑物質(HSACM)對於低濃度之非離子有機污染物非線性吸附行為。本研究以物理方式替代常用之氧化或熱處理方式來分離有機質中碳黑物質,並以土壤及HSACM進行非離子有機污染物之吸附行為研究,結果中發現HSACM為一高表面積碳黑成份,是有機質中對非線性吸附造成貢獻之主要因子,系統中存在雙重吸附質時,會抑制HSACM之吸附,表示HSACM對非離子有機污染物之作用機制為一吸附作用;此部份並以高分子模擬有機質之官能基,進行氣態吸附實驗,實驗結果發現在低濃度下,有機物之極性及有機質中之官能基會影響吸附行為。
第二部份探討有機質芳香性組成對於不同結構之非離子有機化
合物吸附行為所造成之影響。以已知組成之染料或界面活性劑來模擬真實之土壤有機質結構,以簡化有機質複雜組成之變因。實驗選用兩組不同結構但具有近似水溶解度之化合物來進行,研究結果顯示,有機質組成和有機污染物之結構相近者,有機污染物將有較高的分佈係數。溶解度參數被用來解釋不同有機污染物在不同組成之土壤有機質中之的分佈行為,溶解度參數相近之有機化合物間會有較大之分佈係數。
第三部分的研究主題為探討低含量土壤有機質所形成之吸附性表面其吸附非離子有機化合物時所顯現之特異分佈係數值,實驗選有四種苯環化合物及有機氯農藥進行,研究結果指出,有機質在單層吸附時,形成吸附表面的行為和一般分佈作用不同,土壤無機相在有機質單層包覆時會影響有機化合物之分佈作用,使非離子有機污染物有較大之分佈係數。
Since 1970, unlimited usage of pesticides and organic compounds leads to soil contamination. The compositions of soil organic matter originated from various areas were disparity and affect the transportation of nonionic organic compounds (NOCs) in soil critically.
This study explores the influences of specific composition and content in soil organic matter (SOM) on the fates of organic compounds in soil. The first part investigated the contribution of high-surface-area carboneous material (HSACM) to nonlinear sorption at low relative concentration of nonionic organic compounds. The physical non-destructive method was substituted for oxidation or thermal treatment to isolate the HSACM. The sorption of NOCs to soils and HSACM was investigated. The BET data shows the high surface area of HSACM. The existent of HSACM contributed significantly to nonlinear sorption of SOM at low relative concentration of nonionic organic compounds. In binary-solute system, the uptake of a solute by soils at low NOCs concentration may be suppressed by other solutes (i.e., cosolutes). The competitive sorption demonstrated that the mechanism responsible for the uptake of NOCs by HSACM is attributed to adsorption but partitioning. In order to evaluate the effect of specific functional groups in SOM on the adsorption of organic compounds, especially at low pressure, we chose polymers with known functional groups as the adsorbents in this experiment to simplify the complex characteristics of soil organic phase. In all experimental data, the adsorption isotherms show nonlinearity with concave-downward curvatures at low relative pressure but exhibit a linear shape at higher pressure. The nonlinearity of isotherms coincides with solute polarity. The sorption capacities are greater for polar solutes than for nonpolar solutes. The nonlinear capacity increases progressively with increasing solute polarity for other solutes.
The second part elucidated the influences of solid-phase organic constituents on the partition of aliphatic and aromatic organic contaminants. The influence of natural organic matter (NOM) constituents on contaminant distribution coefficients was evaluated by determining the Koc values of aromatic and aliphatic organic compounds (solutes) with clays modified with both aromatic- and aliphatic-rich organic constituents. The studied compounds consisted of naphthalene, phenanthrene, n-pentane, and 2,3,4-trimethylmethane; the solid samples comprised two clays with little organic content, kaolinite and Ca-montmorillonite. For solutes of comparable water solubilities, the organic-carbon normalized distribution coefficients (Koc) of the aliphatic solutes between sorbed aliphatic organic matter and aqueous solution slightly exceed those of the aromatic solutes. By contrast, the aromatic solutes exhibited higher Koc values than did the aliphatic compounds with sorbed aromatic-rich organic matter. The difference in Koc values could be attributed to either comparable solubility parameters or the difference in the chemical structure between nonionic organic solutes and specific components of the simulated NOM.
The objective of last part was to investigate the NOCs uptake to soils with low content SOM. The extraordinary high Koc values of NOCs uptake to soils with low SOM content were research. The influence of SOM contents on contaminant distribution coefficients was evaluated by determining the Koc values of BTEX and organic-chloride pesticides (solutes) with clays modified with aromatic dyes. The experimental data shows the uptake of NOCs to soil with extremely low organic matter content is quiet different from partitioning. The uptake of NOCs to mineral coating with a thin-slice SOM will be affected by mineral. The adsorption mechanism will increase the Koc values of NOCs.
[1] Bohn, H. L., McNeal , B. L., O''Connor G. A. “Soil Chemistry”, New York: Wiley, 7nd Ed., (1985)
[2] Zhou, H., Li, H., Xu, O. “Partition of Nonpolar Organic Pollutants from Water to Soil and Sediment Organic Matters”, Environ. Sci. Technol., 29, 1401-1406 (1995)
[3] Farar, D.M., Coleman. J. D. “The correlation of surface area with other properties of nineteen British clay soil”, Soil Sci., 18, 118-124 (1967)
[4] Chiou, C. T., Lee, J.-F., Boyd, S. A. “The Surface Area of Soil Organic Matter”, Environ. Sci. Technol., 24, 1164-1166 (1990)
[5] Brady, N. C. “The Nature and Properties of Soils” Macmillan, New York, 8th Ed., 11-14 (1974)
[6] Stark, F. L. “Investigations of chloropicrin as a soil fumigant” New York (Cornell) Agric. Ezp. Stn. Mem. 178, 1-61 (1948)
[7] Hanson, W. J., Nex, R. W. “Diffusion of ethylene dibromide in soils” Soil Sci. 76, 209-214 (1953)
[8] Chisholm, R. C., Koblitsky, L. “Sorption of methyl bromide by soil in a fumigation chamber” J. Econ. Entomol. 36, 545-551 (1943)
[9] Yaron, B., Saltzman, S. “Influence of water and temperature on adsorption of parathion by soils” Soil Sci. Soc. Am. Proc. 36, 583-586 (1972)
[10] Kenaga, E. E., Goring, C. A. I. “Relationship between water solubility, soil sorption, octanol-water partitioning, and concentration of chemicals in biota” In Aquatic Toxicology, J.C. Eaton, P. R. Parrish, and A.C. Hendricks, Eds., American Society for Testing and Materials, Philadelphia, 78-115. (1980)
[11] Means, J.C., Wood, S. G., Hassett, J. J., Banwart, W. L. “Sorption of polynuclear aromatic hydrocarbons by sediments and soils” Environ. Sci. Technol. 14, 1524-1528 (1980)
[12] Kile, D. E., Chiou, C. T., Zhou, H. Li, H., Xu, O. “Partition of nonpolar organic pollutants from water to soil and sediment organic matters,” Environ. Sci. Technol. 29, 1401-1406 (1995)
[13] Chiou, C. T., Peters, L. J. and Freed, V. H. “A physical concept of soil-water equilibria for nonionic organic compounds,” Science 206, 831-832 (1979)
[14] Karickhoff, S. W., Brown, D. S., Scott, T. A. “Sorption of hydrophobic pollutants on natural sediments” Water Res. 13, 241-248 (1979)
[15] Schwarzenbach, R. P., Westall, J. “Transport of nonpolar organic compounds from surface water to groundwater: Laboratory sorption studies” Environ. Sci. Technol. 15, 1360-1367 (1981)
[16] Sun, S., Boyd, S. A. “Sorption of polychlorobiphenyl (PCB) congeners by residual PCB-oil phases in soils” J. Environ. Qual. 20, 557-561 (1991)
[17] Rutherford, D. W., Chiou, C. T., Kile, D. E. “Influence of soil organic matter composition on the partition of organic compounds” Environ. Sci. Technol. 26, 336-340 (1992)
[18] Mills, A. C., Biggar, J. W. “Solubility-temperature effects on the adsorption of gamma- and beta-BHC from aqueous and hexane solutions by soil materials” Soil Sci. Soc. Am. Proc. 33, 210-216 (1969)
[19] Spencer, W. F., Cliath, M. M. “Desorption of lindane from soil as related to vapor pressure” Soil Sci. Soc. Am. Proc. 34, 574-578 (1970)
[20] Pierce, R. H., Olney, C. E., Felbeck, G. T. Jr., “p,p’-DDT adsorption to suspended particulate matter in sea water” Geochim. Cosmochim. Acta 38, 1061-1073 (1974)
[21] Chiou, C. T., Porter, P. E., Schmedding, D. W. “Partition equilibria of nonionic organic compounds between soil organic matter and water” Environ. Sci. Technol. 17, 227-231 (1983)
[22] Chiou, C. T., Shoup, T. D., Porter, P. E. “Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solutions” Org. Geochem. 8, 9-14 (1985)
[23] Chisholm, R. C., Koblitsky, L. “Sorption of methyl bromide by soil in a fumigation chamber” J. Econ. Entomol. 36, 545-551 (1943)
[24] Wade, P. I., “Soil fumigation. I. The sorption of ethylene dibromide by soils” J. Sci. Food Agric. 5, 184-192 (1954).
[25] Spencer, W. F., Cliath, M. M., Farmer, W. J. “Vapor density of soil-applied dieldrin as related to soil-water content, temperature, and dieldrin concentration” Soil Sci. Soc. Am. Proc. 33, 509-511 (1969)
[26] Chiou, C. T., Shoup, T. D. “Soil sorption of organic vapors and effects of humidity on sorptive mechanism and capacity” Environ. Sci. Technol. 19, 1196-1200 (1985)
[27] Pennell, K. D., Rao, P. S. C. “Comment on the surface area of soil organic matter” Environ. Sci. Technol. 26, 402-404 (1992)
[28] Thibaud, C., Erkey, C., Akgerman, A. “Investigation of the effect of moisture on the sorption and desorption of chlorobenzene and toluene from soil” Environ. Sci. Technol. 27, 2373-2380 (1993)
[29] Bower. C. A., Gschwend, F. B. “Ethylene glycol retention by soils as a measure of surface area and interlayer swelling” Soil Sci. Soc. Am. Proc. 16, 342-345 (1952).
[30] Bailey, G. W., White, J. L. “Review of adsorption and desorption of organic pesticides by soil colloids with implications concerning pesticide bioactivity” J. Agric. Food Chem. 12, 324-332 (1964)
[31] Weed, S. B., Weber, J. B. “Pesticide-organic matter interactions” In Pesticides in Soil and Water, Guenzi, W. D. Ed., Soil Science Society of America, Madison, WI, 223-256 (1974)
[32] Browman, M. G., Chesters, G. “The solid-water interface:Transfer of organic pollutants across the solid-water interface” In Fate of Pollutants in the Air and Water Environments, Part I, Suffet, I. H. Ed., Wiley, New York, 49-1051977
[33] Mingelgrin, U., Gerstl, Z. “Reevaluation of partitioning as a mechanism of nonionic chemicals adsorption in soil” J. Environ. Qual. 12, 1-11 (1983)
[34] Chiou, C. T., Rutherford, D. W. Manes, M. “Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data” Environ. Sci. Technol. 27, 1587-1594 (1993)
[35] Pennell, K. D., Boyd, S. A., Abriola, L. M. “Surface area of soil organic matter reexamined” Soil Sci. Soc. Am. J. 59, 1012-1018 (1995)
[36] Mane, M., “Activated carbon adsorption fundamentals” In Encyclopedia of Environmental Analysis and Remediation, Myers, R. A. Ed., Wiley, New York, 26-68 (1998)
[37] Ruthven, D. M., “Principles of Adsorption and Adsorption Process” John Wiley & Sons (1984)
[38] Thlbaud, C., Erkey, C., Akgerman, A. “Investigation of adsorption equilibria of volatile organics on soil by frontal analysis chromatography,” Environ. Sci. Technol. 26, 1159-1164 (1992)
[39] Campagnolo, J. F., Akgerman, A. “A prediction method for gas-phase VOC Isotherms onto soils and soil constituents” J. Hazard. Mater. 49, 231-245 (1996)
[40] Dural, N. H., Chen, C. H., “Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils” J. of Hazard. Mater. 53, 75-92 (1997)
[41] Ruiz, J., Bilbao, R., Murillo, M. B., “Adsorption of different VOC onto soil minerals from gas phase: influence of mineral, type of VOC, and air humidity” Environ. Sci. Technol. 32, 1079-1084 (1998)
[42] Brunauer, S., Emmett, P. H., Teller, E. “Adsorption of gases in multimolecular layers” J. Am. Chem. Soc. 60, 309-319 (1938)
[43] Adamson, A. W., “Physical Chemistry of Surfaces” 2nd Ed., Wiley, New York (1967)
[44] Gregg. S. J., Sing, K. S. W. “Adsorption, Surface Area, and Porosity” 2nd Ed., Academic Press, London (1982)
[45] Weissmahr, K. W., Haderlein, S. B., Schwarzenbach, R. P., “In situ spectroscopic investigations of adsorption mechanism of nitro aromatic compounds at clay minerals” Environ. Sci. Technol. 31, 240-247 (1997)
[46] Doner, H. E., Mortland, M. M. “Benzene complexes with Cu (II) montmorillonite” Science 166, 1406-1407 (1969)
[47] Mader, B. T., Goss, K. U., Eisenreich, S. J. “Sorption of nonionic hydrophobic organic chemicals to mineral surface” Environ. Sci. Technol. 31, 1079-1086 (1997)
[48] Weidenhaupt, A., Arnold, C., Muller, S. R., Haderlein, S. B., Schwarzenbach, R. P. “Sorption of organic biocides to mineral surface” Environ. Sci. Technol. 31, 2603-2609 (1997)
[49] 王一雄、陳尊賢、李達源,“土壤污染學”,國立空中大學,台北,民國八十六年。 【ISBN: 957-661-091-5】
[50] Cseri, T., Békássy, S., Figueras, F., Rizner, S. “Benzylation of aromatics on ion-exchanged clays” J. Mol. Catal. A-Chem. 98, 101-107 (1995)
[51] Maes, N., Heylen, I., Cool, P., Vansant, E. F. “The relation between the synthesis of pillared clays and their resulting porosity” Appl. Clay Sci. 12, 43-60 (1997)
[52] Goss, K. U. “Effects of temperature and relation humidity on the sorption of organic vapors on clay minerals” Environ. Sci. Technol. 27, 2127-2132 (1993)
[53] Goss, K. U., Eisenreich, S. J. “Adsorption of VOCs from the gas phase to different minerals and a mineral mixture” Environ. Sci. Technol. 30, 2135-2142 (1996)
[54] Lee, J.-F., Lee, C.-K., and Juang, L.-C. “Size effects of exchange cation on the pore structure and surface fractality of montmorillonite” J. Colloid Interf. Sci., 217, 172-176 (1999)
[55] Goss, K. U. “Effects of temperature and relation humidity on the sorption of organic vapors on quartz sand” Environ. Sci. Technol. 26, 2287-2294 (1992)
[56] Goss, K. U., Eisenreich, S. J. “Sorption of volatile organic compounds to particles from a combustion source at different temperatures and relation humidity” Environ. Sci. Technol. 31, 2827-2832 (1997)
[57] Steinberg, S. M., Schmeltzer, J. S., Kreamer, D. K. “Sorption of benzene and trichloroethylene on a desert soil: Effects of moisture and organic matter” Chemosphere 33, 961-980 (1996)
[58] Batterman, S., Kulshrestha, A., Chang, H. “Hydrocarbon vapor transport in low moisture soils” Environ. Sci. Technol. 29, 171-180 (1995)
[59] Ong, S. K., Lion, L. W. “Effects of soil properties and moisture on the sorption of trichloroethylene vapor” Water Res. 26, 287-2294 (1992)
[60] Jury, W. A., Spencer, W. F., Farmer, W. J. “Behavior assessment model for trace organic in soil, 1. Model description” J. Environ. Qual. 12, 558-564 (1983)
[61] Chiou, C. T., Porter, P. E., Schmedding, D. D. W. “Partition equilibrium of nonionic organic compounds between soil organic matter and water” Environ. Sci. Technol. 17, 227-231 (1983)
[62] Chiou, C. T., Shoup, T. D., Porter, P. E. “Mechanistic roles of soil humus and minerals in the sorption of nonionic organic compounds from aqueous and organic solution” Org. Geochem. 8, 9-14 (1985)
[63] Chiou, C. T., Kile, D. E., Malcolm, R. L. “Sorption of vapors of some organic liquids on soil humic acid and its relation to partition of organic compounds in soil organic matter” Environ. Sci. Technol. 22, 298-303 (1988)
[64] Ong, S. K., Lion, L. W. “Mechanisms for trichloroethylene vapor sorption onto soil minerals” J. Environ. Qual. 20, 180-188 (1991)
[65] Ong, S. K., Lion, L. W. “Trichloroethylene vapor sorption onto soil minerals” Soil Sci. Soc. Am. J. 55, 1559-1568 (1991)
[66] Schnitzer, M., Kodama, H. “Interactions between organic and inorganic components in particle-size fractions separated from four soils” Soil. Sci. Soc. Am. J. 56, 1099-1105 (1992)
[67] Tate III, R. L., “Soil organic matter,” John Wiley & Sons, Inc., New York, 1987.
[68] Rutherford, D. W., Chiou, C. T. “Effect of water saturation in soil organic matter on the partition of organic compounds” Environ. Sci. Technol., 26, 965-970 (1992)
[69] Grathwohl, P. “Influence of organic matter from soils and sediments from various origins on the sorption of some chlorinated aliphatic hydrocarbons: Implications on Koc correlations” Environ. Sci. Technol. 24, 1687-1693 (1990)
[70] Weber, W. Jr., Mcginley, P. M., Katz, L. E. “A distributed reactivity model for sorption by soils and sediments” Environ. Sci. Technol. 26, 1955-1962 (1992)
[71] Dural, N. H., Chen, C. H. “Analysis of vapor phase adsorption equilibrium of 1,1,1-trichloroethane on dry soils” J. of Hazard. Mater. 53, 75-92 (1997)
[72] Leistra, M. “Destribution of 1,3-dichloropropene over the phases in soil” L. Agric. Food Chem. 18, 1124-1126 (1970)
[73] Lambert, S.M. “Functional Relationship Between Sorption in Soil and Chemical Structure” J. Agric. Food Chem. 15, 572-576, (1989)
[74] Thomas, M.Y.; Weber, W. J. Jr. “A Distributed Reactivity Model for Sorption by Soils and Sediments. 3. Effects of Diagenetic Processes on Sorption Energetics” Environ. Sci. Technol. 29, 92-97 (1995)
[75] Xing, B., Pignatello, J. J., Gigliotti, B. “Competitive Sorption between Atrazine and Other Organic Compounds in Soils and Model Sorbents” Environ. Sci. Technol. 30, 2432-2440 (1996)
[76] Spurlock, F. C., Bigger, J. W. “Thermodynamics of organic chemical partition in soils. 2. Nonlinear partition of substituted phenylureas from aqueous solution” Environ. Sci. Technol., 28, 996-1002 (1994)
[77] Chiou, C.T., Kile, D.E. “Deviations from Sorption Linearity of Polar and Nonpolar Organic Compounds on Soils at Low Relative Concentrations” Environ. Sci. Technol. 32, 338-343 (1998)
[78] Leboeuf, E. J., Weber, W. J., Jr. “A Distributed Reactivity Model for Sorption by Soils and Sediments. 8. Sorbet Organic Domains: Discovery of a Humic Acid Glass Transition and an Argument fur a Polymer-Based Model” Environ. Sci. Technol., 31, 1697-1702 (1997)
[79] Huang, W.; Young, T. M.; Schlautman, M. A.; Weber, W. J. Jr. “A Distributed Reactivity Model for Sorption by Soils and Sediments. 9. General Isotherm Nonlinearity and Applicability of the Dual Reactive Domain Model” Environ. Sci. Technol., 31, 1703-1710 (1997)
[80] Pignatello, J. J.; Xing, B. “Mechanisms of Slow Sorption of Organic Chemicals to Natural Particles” Environ. Sci. Technol. 30, 1-11 (1996)
[81] Xing, B.; Pignatello, J. J. “Dual-Mode Sorption of Low-Polarity Compounds in Glassy Poly (Vinyl Chloride) and Soil Organic Matter” Environ. Sci. Technol. 31, 792-799 (1997)
[82] Chiou, C. T.; Kile. D. E.; Rutherford, D. W. “Sorption of Selected Organic Compounds from Water to a Peat Soil and Its Humic-Acid and Humin Fractions Potential Sources of the Sorption Nonlinearity” Environ. Sci. Technol. 34, 1254-1258 (2000)
[83] Manes, M, Hofer, L. J. E. “Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon” J. Phys. Chem. 73, 584-590 (1969)
[84] Chiou, C. T., Manes, M. “Application of the Polanyi adsorption potential theory to adsorption from solution on activated carbon. V. Adsorption from water of some solids and their melts, and a comparison of bulk and adsorbate melting points” J. Phys. Chem. 78, 622-626 (1974)
[85] Griffin, J. J., Goldberg, E. D. “Impact of fossil fuel combustion on sediments of Lake Michigan: A reprise” Environ. Sci. Technol. 17, 244-245 (1983)
[86] Smith, D. W., Griffin, J. J., Goldberg, E. D. “Elemental carbon in marine sediments: a baseline for burning” Nature (London) 241, 268-270 (1973)
[87] Masiello, C.A., Druffel, E. R. M. “Black carbon in deep-sea sediments” Science 280, 1911-1913 (1998)
[88] Senesi, N., Testini, C. Pestic. Sci., 14, 79, (1983)
[89] Kleineidam, S., Rügner, H., Ligouis, B., Grathwohl, P. “Organic matter facies and equilibrium sorption of phenanthrene” Environ. Sci. Technol. 33, 1637-1644 (1999)
[90] Karapanagioti, H. K., Kleineidam, S., Sabatini, D. A., Grathwohl, P., Ligouis, B. “Impacts of heterogeneous organic matter on phenanthrene sorption: Equilibrium and kinetic studies with aquifer material” Environ. Sci. Technol. 34, 406-414 (2000)
[91] Karapanagioti, H. K., Childs, J., Sabatini, D. A. “Impacts of heterogeneous organic matter on phenanthrene sorption: Different soil and sediment samples” Environ. Sci. Technol. 35, 4684-4690 (2001)
[92] Gustafsson, Ö., Haghseta, F., Chan, C., MacFarlane, J., Gschwend, P. M. “Quantification of the dilute sedimentary soot phase: Implications for PAH speciation and bioavailability” Environ.Sci. Technol. 31, 203-209 (1997)
[93] Accardi-Dey, A., Gschwend, P. M. “Assessing the combined roles of natural organic matter and black carbon as sorbents in sediments” Environ. Sci. Technol. 36 , 21-29 (2002)
[94] Ran, Y., Xiao, B., Huang, W., Peng, P., Liu, D., Fu, J., Sheng, G. “Kerogen in aquifer material and its strong sorption for nonionic organic pollutants” J. Environ. Qual., 32, 1701-1709 (2003)
[95] Song, J. Peng, P. Huang, W. “Black carbon and kerogen in soils and sediments. 1. Quantification and characterization” Environ. Sci. Technol. 36, 3960-3967 (2002)
[96] Ghosh, U., Zimmerman, J. R., Luthy, D. G. “PCB and PAH speciation among particle types in contaminated harbor sediments and effects on PAH bioavailability” Environ. Sci. Technol, 37, 2209-2217 (2003)
[97] Yang, Y., Shdng G. “Enhanced Pesticide Sorption by Soils Containing Particulate Matter from Crop Residue Burns” Environ. Sci. Technol. 37, 3635-3639 (2003)
[98] Chun, Y., Sheng, G., Chiou, C.T. “Evaluation of Current Techniques for Isolation of Chars as Natural Adsorbents” Environ. Sci. Technol. 38, 4227-4232 (2004)
[99] Chiou, C. T. “Comment on thermodynamics of organic chemical partition in soils” Environ. Sci. Technol. 29, 1421-1422 (1995)
[100] Chiou, C. T., McGroddy, S. E., Kile, D. E. “Partition characteristics of polycyclic aromatic hydrocarbons on soils and sediments” Environ. Sci. Technol. 32, 264-269 (1998)
[101] Baldock, J. A., Oades, J. M. Waters, A. G., Peng, X., Vassallo, A. M., Wilson, M. A. “Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR spectroscopy” Biogeochemistry 16, 1-42 (1992)
[102] Chin, Y.-P., Aiken, G. R., Danielsen, K. M. “Binding of Pyrene to Aquatic and Commercial Humic Substances: The Role of Molecular Weight and Aromaticity” Environ. Sci. Technol. 31, 1630-1635, (1997)
[103] Gauthier, T. D., Seitz, W. R., Grant, C. L. “Effects of structural and compositional variations of dissolved humic materials on pyrene Koc values” Environ. Sci. Technol. 21, 243 (1987)
[104] Acree, W. E., Jr., “Department of Chemistry, University of North Texas” Denton, Texas, personal communication (1998)
[105] Hilbebrand, J. H., Praunitz, J. M., Scott, R. L. “Regular and Related Solutions” Van Nostrand Reinhold Co., New York (1970)
[106] Chiou, C. T., Kile, D. E. “Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter” Environ. Sci. Technol. 28, 1139-1144 (1994)
[107] Cornelissen, G. Gustafsson, Ö. “Sorption of Phenanthrene to Environmental Black Carbon in Sediment with and without Organic Matter and Native Sorbates” Environ. Sci. Technol. 38 (2004) 148-155
[108] Karapanagioti, H. K., Sabatini, D. A. “Impacts of Heterogeneous Organic Matter on Phenanthrene Sorption: Different Aquifer Depths” Environ. Sci. Technol. 34, 2453-2460, (2000)
[109] Xiao, B. Yu, Z., Huang, W., Song, J., Peng, P. “Black Carbon and Kerogen in Soils and Sediments. 2. Their Roles in Equilibrium Sorption of Less-Polar Organic Pollutants” Environ. Sci. Technol. 38, 5842-5852 (2004)
[110] Tsay, C.-S. Lee, C.-K. Chiang, A. S. T. “The Fractal and Percolation Analysis of a Polymeric Al2O3 gel” Chem. Phys. Lett. 278, 83–90 (1997)
[111] Coughlin, R. W., Ezra, F. S. “Role of surface acidity in the adsorption of organic pollutants on the surface of carbon” Environ. Sci. Technol. 2, 291-297 (1968)
[112] Lee, J.-F., Liao, P.-M. Kuo, C.-C. Yang, H.-T. Chiou, C. T. “Influence of a Nonionic Surfactant (Triton X-100) on Contaminant Distribution between Water and Several Soil Solids” J. Colloid Interf. Sci. 229, 445-452 (2000)
[113] Nayyar, S. P., Sabatini, D. A., Harwell, J. H. “Surfactant Adsolubilization and Modified Admicellar Sorption of Nonpolar, Polar, and Ionizable Organic Contaminants” Environ. Sci. Technol. 28, 1874-1881 (1994)
[114] Zhu, L., Chen, B., Shu, T., Chiou, C.T. “Interactions of Organic Contaminants with Mineral-Adsorbed Surfactants” Environ. Sci. Technol. 37, 4001-4006 (2003)
[115] Xu, Q., Snell, E. D. “Adsorption Behavior of Alkylarylethoxylated Alcohols on Silica” J. Colloid Interf. Sci. 144, 165-173 (1991)
[116] 葉佩雯,「分子間作用力影響土壤中非離子有機物傳輸行為之研究」,碩士論文,中央大學環境工程研究所,2002
[117] 趙承琛,“界面科學基礎”,復文出版社,台南市,1987