跳到主要內容

簡易檢索 / 詳目顯示

研究生: 朱育德
Yu-De Chu
論文名稱: 基於字詞內容之適應性對話系統
MAGEN: An Adaptive Conversational System Based On Terms
指導教授: 張嘉惠
Chia-Hui Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 43
中文關鍵詞: 智慧代理人自然語言人機互動對話系統
外文關鍵詞: Conversational System, Human-Machine interaction with Natural Language, Intelegent Agent
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   在資訊科技蓬勃發展的今日,資訊化與多元化時代儼然來臨;眾多線上資訊服務的崛起,整合服務與人機互動介面成為矚目焦點。對話系統是發展長久的一項研究,其分支眾多,其中一類即是以系統代理為主要目標,是一種目標導向性的對話系統,而本文即是在這樣目的下所做的研究。
      本文系統MAGEN是一強調適應性的目標導向對話系統,採用以字詞為基礎,詞類為輔助的方式,捨棄分類器與文法資訊,僅就字詞內容當作對話之依據,解決以往系統採用分類器、文法資訊所造成擴充性不足,成長性受限的窘境。在此情況下,MAGEN將適應性充分發揮在三個方面。首先,在對話領域上,由於採用詞庫與詞類的設計,可以在僅變動存放在資料庫中的知識庫即可達成領域移轉,低門檻、低成本,讓MAGEN易於適用各種對話領域。其次,對話過程中,不同的對象會有不同的詞彙用語,透過線上學習的機制,系統將可學習這些詞彙,下次使用者再度使用這些詞彙時,系統將可有效辨識,達到適應使用者的對話習慣。最後,系統本身核心相當輕量,對話皆以文字方式進行,無須圖形化介面之輔助,因此可輕易移轉成各種型態,例如:Web Service、手持式系統等。
      為驗證三項適應性,設計有實驗項目,以不同類別之主題、雙回合的方式驗證適應性的情況,並實作三種應用形態的系統,更突顯實際用途上確實存有其經濟價值。


      In this thesis, we present MAGEN, a light-weight dialogue system, which can be adapted to act for variant applications. It uses shallow parsing as the Natural Language Understanding component, and use classified terms as the knowledge base. In the situation where grammar is not followed strictly and mixed with Chinese and English, shallow parser can be better than full parsing and semantic analyzer. Using classified terms on the Knowledge base makes the growth of knowledge much easier and simpler.
      MAGEN is a frame-based conversational system where the control of dialogue is shared by users and the system. To be more specific, the user has the initial control; once the goal of the user is identified, the control is transferred to the user. New purposes/conversation can be added to MAGEN by inserting new scripts which can describe the necessary information for such conversation.
    The term-based knowledge and script-based goals make MAGEN very adaptive and easily transform to various application domains, such as hand-held devices, integration, systems etc.

    目錄  I 圖目錄  III 表目錄  IV 1   緒論  01 1.1  研究背景  01 1.2  研究目的  02 1.3  論文架構  03 2   相關研究  04 2.1  有限狀態基礎  05 2.2  語意框架基礎  06 2.3  混合主控  06 2.4  系統比較  08 3   系統介紹  10 3.1  知識庫  12 3.1.1 詞庫  12 3.1.2 腳本  14 3.2  對話管理員  16 3.2.1 自然語言了解(N.L.U.)  16 3.2.2 對話狀態(Status)  18 3.2.3 腳本選擇(Script Selection)  22 3.2.4 腳本填充(Script Filling)23 3.2.5 對話確認與修正(C&M)26 3.3  系統實作  28 3.4  對話範例  30 4   實驗與分析  36 5   結論與未來展望  39 參考文獻  41

    [1] J. Allen, “Natural Language Understanding,” The Benjamin/Cummings Publishing Company, 1995.
    [2] J. F. Allen, D. K. Byron, M. Dzikovska, G. Ferguson, L. Galescu, and A. Stent, “Towards Conversational Human-Computer Interaction,” AI Magazine, 2001.
    [3] H. Aust, M. Oerder, F. Seide, and V. Steinbiss, “The Philips automatic train timetable information system,” Speech Communication, vol. 17, pp. 249- 262, 1995.
    [4] M. J. Chen, “Intention Extraction for Intelligent Medical Query System,” National Cheng Kung University, Master Thisis, ROC, Jun. 2003.
    [5] K. J. Chen, S. H. Liu, “Word Identification for Mandarin Chinese Sentences,” COLING, pp. 101-107, 1992.
    [6] A. E. Cheyer and D.E. Martin, “The Open Agent Architecture,” Autonomous Agents and Multi-Agent Systems, 2001.
    [7] J. Chu-Carroll, “MIMIC: An Adaptive Mixed Initiative Spoken Dialogue System for Information Queries,” The Sixth Conference on Applied Natural Language, pp. 97-104, 2000.
    [8] K. M. Colby, “Artificial Paranoia,” Artificial Intelligence, vol. 2, 1971.
    [9] K. D. Gottschalk, S. Graham, H. Kreger, and J. Snell, “Introduction to Web services architecture,” New Developments in Web Services and E- commerce, vol. 41, Nov. 2001.
    [10] R. Higashinaka, N. Miyazaki, M. Nakano, K. Aikawa, “Evaluating discourse understanding in spoken dialogue systems,” ACM Transactions on Speech and Language Processing(TSLP), vol. 1, pp. 1-24, 2004.
    [11] R. Kaplan, S. Riezler, T. King, J. Maxwell, A. Vasserman, and R. Crouch, “Speed and accuracy in shallow and deep stochastic parsing,” HLT-NAACL, 2004.
    [12] C. J. Lee, E. F. Huang, and J. K. Chen, “A Multi-keyword Spotter for the Application of the TL Phone Directory Assistant Service, ”Workshop on Distributed System Technologies & Applications, pp. 197-202, 1997.
    [13] X. Li and D. Roth, “Exploring evidence for shallow parsing,” The Annual Conference on Computational Natural Language Learning, 2001.
    [14] Y. C. Lin, T. H. Chiang, H. M. Wang, C. Peng, and C. Chang, “The Design of Mandarin Chinese Spoken Dialogue System,” International Conference on Spoken Language, vol. 1, pp. 230–233, 1998.
    [15] M. Lundeberg, J. Gustafson, and N. Lindberg, “The august spoken dialogue system,” Eurospeech, 1999.
    [16] D. Martin, A. Cheyer, and D. Moran, “The Open Agent Architecture: a framework for building distributed software systems,” Applied Artificial Intelligence, vol. 13, pp. 91--128, 1999.
    [17] M. F. McTear, “Spoken Dialog Technology: Enabling the Conversational User Interface,” ACM Computing Surveys vol. 34, pp. 90-169, Mar. 2002.
    [18] H. Meng, P. C. Ching, S. F. Chan, Y. F. Wong, and C. C. Chan, “ISIS: An Adaptive, Trilingual Conversational System With Interleaving Interaction and Delegation Dialoogs,” ACM Transations on Computer-Human Interaction, vol. 11, pp. 268-299, Sep. 2004.
    [19] A. Nguyen, and W. Wobcke, “An Agent- Based Approach to Dialogue Management in Personal Assistants,” International conference on intelligent user interfaces, pp. 137-144, Jan. 2005.
    [20] A. Stolcke, E. Shriberg, R. Bates, N. Coccaro, D. Jurafsky, R. Martin, M. Meteer, K. Ries, P. Taylor, and C. V Ess-Dykema, “Dialog act modeling for conversational speech,” AAAI Spring Symposium on Applying Machine Learning, pp. 98-105, 1998.
    [21] E. Voorhees, “The TREC-8 Question Answering Track Report,” Eighth Text Retrieval Conference, pp. 77-82, 1999.
    [22] J. Weizenbaum, “ELIZA—A Computer Program for the Study of Natural Language Communication between Man and machine,” CACM, vol. 10, 1967.
    [23] Y. Wilks, “Human-Computer Conversation,” International Workshop on Human-Computer Conversation, vol. 1, pp. 1-14, Jun. 1999.
    [24] M. Z. Yang, “Semantic Dependency Based Natural Language Understanding in a Medical Dialogue System,” National Cheng Kung University, Master Thisis, Jun. 2004.

    QR CODE
    :::