跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳宏嘉
Hong-Jia Chen
論文名稱: 地電訊號異常與地震的關聯性研究
A study of correlations between geoelectric signal anomalies and earthquakes
指導教授: 陳建志
Chien-Chih Chen
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 地球科學學系
Department of Earth Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 245
中文關鍵詞: 地電場統計量異常地震前兆地震機率預報機器學習RLC電路模型滑塊模型
外文關鍵詞: Geoelectric statistical anomaly, earthquake precursor, earthquake probability forecasts, machine learning, RLC circuit model, spring-block model
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於地震造成的破裂與異常前兆的產生機制,目前尚未釐清,因此地震前兆相關的研究一直以來備受爭議。本論文的目的,在於驗證地電場的震前異常與地震的關聯性。研究主要從兩方面著手進行,以檢驗與解釋地電地震前兆的可能性。一是從台灣地電觀測網(GeoElectric Monitoring System, GEMS)的野外資料作有系統的分析,另一則是建立震電模型作解析與數值分析。
    首先,從GEMS 野外資料分析開始,本論文建立一套包含預測模型以及二元分類模型的演算法,以檢查地電場的震前異常與地震的關聯性。此演算法稱作GEMS’ Times of Increased Probability (GEMSTIP)演算法,一開始是由Chen and Chen [Nat. Hazards., 84, 2016]提出。本論文會(1)減少原始版本的模型參數,以及(2)引入聯合測站法作改進,以便得到穩健的分析結果。這個新版的GEMSTIP 方法結合莫爾昌誤差圖表法(Molchan Error Diagram, MED),來評估每組模型參數的預測表現值。另外,利用GEMSTIP 方法,
    分析不同截止頻率的高通與低通濾波的地電場資料,還能夠決定出高訊噪比、與地震相關的地電場訊號頻段。除此之外,根據MED 推導出的統計顯著性檢驗的分析指出,潛藏的震電關係是客觀存在的,而且利用這個震電關係可以建立出基於地電異常的地震機率預報。
    第二部分,則從室內岩石破壞實驗的物理角度出發,本論文提出一個完整、有自洽性的物理數學模型,稱作Chen-Ouillon-Sornette (COS)震電模型。這個COS 模型本質上結合伯里奇-諾波夫(Burridge-Knopoff,簡稱BK)彈簧塊體的力學系統與RLC 電路組成的電動系統。而在力學與電學之間的耦合,則是以應力激發電壓(Stress-Induced Voltage)的形式表現。BK 滑塊系統可以模擬每一個塊體的應力狀態與破裂事件的滑移量,而應力則會產生電壓變化,使得RLC 電路能進一步模擬電荷的產生與傳遞。COS 模型提供一般化的理論框架,以便模擬與分析地電與地震之間的關係。尤其是,它能夠再現出,震前觀測到許多次的電磁訊號的單峰脈衝(Unipolar Pulses),也可以解釋在地電場訊號觀測到的統計量的異常與相變,例如Chen and Chen [Nat. Hazards, 84, 2016]與Chen et al. [Terr. Atmos. Ocean. Sci., 28, 2017]提出在震前的地電場偏度與峰度異常,以及埃夫塔克西亞斯研究團隊[Eftaxias et al., Nat. Hazards Earth Syst. Sci., 3, 2003]提出在震前的地電場功率譜的冪律指數變化。總結來說,根據台灣地電觀測網的野外資料分析,以及理論震電模型的解析與數值分析,本論文有力地支持地電地震前兆的存在,並認為以地電異常作地震機率預報是有可行性的,如此本論文將為地震前兆研究奠定重要的基石。


    Due to the lack of the physical mechanisms of rupture precursors, studies of earthquake precursors are still debated and skeptical. The purpose of this thesis is to verify correlations between pre-seismic anomalies of geoelectric fields and earthquakes. The thesis includes two
    main components to examine and explain the geoelectric precursors to large earthquakes: the first is the field data analyses observed from Taiwan Geoelectric Monitoring System (GEMS), and the second is the analytical and numerical analyses of a seismo-electric model.
    Beginning with field data analysis, we examine the precursory behavior of geoelectric data with respect to large earthquakes by means of an algorithm including a predictive model and binary classification. This algorithm is dubbed as GEMS’ Times of Increased Probability (GEMSTIP), introduced originally by Chen and Chen [Nat. Hazards., 84, 2016]. In the thesis, we improve the GEMSTIP model’s robustness (i) by removing a time parameter of coarsegraining in the foregoing paper, and (ii) by introducing joint stations method instead of single
    station method. Moreover, the GEMSTIP algorithm includes Molchan Error Diagram (MED) to evaluate the performance of a model parameter set in a forecasting dataset. This improved GEMSTIP algorithm also analyzes a large number of high- and low-pass filtered datasets with different cutoff frequencies, determining the frequency bands, which were indefinite in previous works, of the earthquake-related signals with high signal-to-noise ratio for the geoelectric data. Based on significance tests derived from MED, the underlying pattern of seismo-electric
    relationship is objectively thought to exist. It is therefore appropriate for machine learning to extract this underlying relationship to establish earthquake probability forecasts.
    In the second part, according to the observed physics from indoor experiements of rock fracturing tests, we introduce the first fully self-consistent model combining the seismic micro-ruptures occurring within a generalized Burridge-Knopoff spring-block model with the nucleation and propagation of electric charge pulses within a coupled electrokinetic system (an RLC circuit model). This model, coined as Chen-Ouillon-Sornette (COS) model, provides a
    general theoretical framework for modeling and analyzing the relationships between geoelectric signals and earthquakes. In particular, it is able to reproduce the unipolar pulses that have often been reported before large seismic events, as well as various observed anomalies of the ambient electric field, such as pre-seismic skewness and kurtosis anomalies [Chen and Chen, Nat. Hazards, 84, 2016; Chen et al., Terr. Atmos. Ocean. Sci., 28, 2017], and pre-seismic power-law exponent variations of power spectral densities of geoelectric fields [Eftaxias et al., Nat. Hazards Earth Syst. Sci., 3, 2003]. In consequence, this thesis strongly supports the theory of seismo-electric precursors, and lays the foundations for earthquake probability forecasts.

    摘要.................................................... v Abstract.............................................. vii 誌謝................................................... ix 目錄.................................................... x 圖目錄................................................. xii 表目錄................................................. xiv 第一章、緒論............................................. 1 1-1 研究動機與目的....................................... 1 1-2 文獻回顧............................................. 3 第二章、研究資料......................................... 7 2-1 地電觀測站與地電場資料描述............................ 7 2-2 地震觀測站與地震資料描述.............................. 8 第三章、地電場統計量的變化與地震關係之探討................. 14 3-1 地電場的統計量...................................... 14 3-2 地電場偏度與峰度的異常與地震之關係.................... 15 3-3 每日統計量的異常數量與地震之關係...................... 16 3-4 測站的可偵測範圍與地震之關係.......................... 16 3-5 觀測時間長度、異常日數量與地震之關係.................. 17 第四章、地電場統計量的異常與地震關係之檢驗................. 24 4-1 GESMTIP 演算法:單站法.............................. 24 4-1-1 預測模型之建立.................................... 24 4-1-2 擬合程度之評估.................................... 26 4-2 GEMSTIP 演算法:聯合測站法........................... 27 4-2-1 方法描述.......................................... 27 4-2-2 顯著性分析........................................ 28 4-3 GEMSTIP 分析結果.................................... 29 第五章、地震影響的地電場訊號頻段之探討與檢驗............... 43 5-1 濾波............................................... 43 5-2 濾波資料的GEMSTIP分析結果............................ 44 5-2-1 高通與低通濾波資料分析............................. 44 5-2-2 帶通濾波資料分析.................................. 45 5-3 基於地電異常的地震機率預報........................... 47 第六章、斷層微破裂為地電脈衝訊號的可能來源................ 74 6-1 引言............................................... 74 6-2 滑塊模型............................................ 75 6-3 單塊體震電模型...................................... 76 6-3-1 模型描述與控制方程................................. 76 6-3-2 解析解............................................ 78 6-3-3 應力降與電壓擾動的關係............................. 81 6-4 多塊體震電模型...................................... 82 6-4-1 模型描述與控制方程................................. 82 6-4-2 數值解........................................... 84 6-5 震電模型之討論...................................... 85 第七章、結論............................................ 96 參考文獻................................................ 98 附錄A 所有地電測站的每日平均、變異數、偏度、峰度的時間序列. 113 附錄B 與本論文相關且已發表之期刊文章..................... 120 附錄C 與本論文相關且擬發表之期刊文章..................... 157

    [1] FREUND, F., OUILLON, G., SCOVILLE, J. and SORNETTE, D. (2017). Earthquake precursors
    in the light of peroxy defects theory: critical review of systematic observations.
    ArXiv171101780 Phys.
    [2] KNOPOFF, L. and SORNETTE, D. (1995). Eartkquake Death Tolls. J. Phys. I 5 1681–1668.
    [3] SHIN, T. C., KUO, K. W., LEE, W. H. K., TENG, T. L. and TSAI, Y. B. (2000). A Preliminary
    Report on the 1999 Chi-Chi (Taiwan) Earthquake. Seismol. Res. Lett. 71 24–30.
    [4] TSAI, Y.-B., YU, T.-M., CHAO, H.-L. and LEE, C.-P. (2001). Spatial Distribution and Age
    Dependence of Human-Fatality Rates from the Chi-Chi, Taiwan, Earthquake of 21
    September 1999. Bull. Seismol. Soc. Am. 91 1298–309.
    [5] LIAO, Y.-H., HWANG, L.-C., CHANG, C.-C., HONG, Y.-J., LEE, I.-N., HUANG, J.-H., LIN,
    S.-F., SHEN, M., LIN, C.-H., GAU, Y.-Y. and YANG, C.-T. (2003). Building Collapse and
    Human Deaths Resulting from the Chi-Chi Earthquake in Taiwan, September 1999. Arch.
    Environ. Health 58 572–8.
    [6] 陳運泰. (2009). 地震預測:回顧與展望. 中國科學 D輯:地球科學 39 1633–58.
    [7] CHEN, H.-J., CHEN, C.-C., OUILLON, G. and SORNETTE, D. (2017). Using skewness and
    kurtosis of geoelectric fields to forecast the 2016/2/6, ML6.6 Meinong, Taiwan
    Earthquake. Terr. Atmospheric Ocean. Sci. 28 745–61.
    [8] CHEN, H.-J. and CHEN, C.-C. (2016). Testing the correlations between anomalies of
    statistical indexes of the geoelectric system and earthquakes. Nat. Hazards 84 877–95.
    [9] CHEN, C.-H., LIU, J.-Y., YEN, H.-Y., ZENG, X.-P. and YEH, Y.-H. (2004). Changes of
    geomagnetic total field and occurrences of earthquakes in Taiwan. Terr. Atmospheric Ocean. Sci. 15 361–70.
    [10] CHEN, C.-H., LIU, J.-Y., LIN, P.-Y., YEN, H.-Y., HATTORI, K., LIANG, W.-T., CHEN, Y.-I.,
    YEH, Y.-H. and ZENG, X. (2010). Pre-seismic geomagnetic anomaly and earthquake
    location. Tectonophysics 489 240–7.
    [11] GUP, G. and XIE, G. (2007). Earthquake cloud over Japan detected by satellite. Int. J.
    Remote Sens. 28 5375–6.
    [12] HARRISON, R. G., APLIN, K. L. and RYCROFT, M. J. (2014). Brief Communication:
    Earthquake–cloud coupling through the global atmospheric electric circuit. Nat Hazards
    Earth Syst Sci 14 773–7.
    [13] JONES, R. H. and STEWART, R. C. (1997). A method for determining significant structures
    in a cloud of earthquakes. J. Geophys. Res. Solid Earth 102 8245–54.
    [14] DERR, J. S. (1973). Earthquake lights: A review of observations and present theories. Bull.
    Seismol. Soc. Am. 63 2177–87.
    [15] FINKELSTEIN, D., HILL, R. D. and POWELL, J. R. (1973). The Piezoelectric Theory of
    earthquake lightning. J. Geophys. Res. 78 992–3.
    [16] PETRAKI, E., NIKOLOPOULOS, D., PANAGIOTARAS, D., CANTZOS, D., YANNAKOPOULOS,
    P., NOMICOS, C. and STONHAM, J. (2015). Radon-222: a potential short-term earthquake
    precursor. J. Earth Sci. Clim. Change 6 1.
    [17] CHEN, C.-H., WANG, C.-H., LIU, J.-Y., LIU, C., LIANG, W.-T., YEN, H.-Y., YEH, Y.-H.,
    CHIA, Y.-P. and WANG, Y. (2010). Identification of earthquake signals from groundwater
    level records using the HHT method. Geophys. J. Int. 180 1231–41.
    [18] MATSUMOTO, N., KITAGAWA, G. and ROELOFFS, E. A. (2003). Hydrological response to earthquakes in the Haibara well, central Japan - I. Groundwater level changes revealed
    using state space decomposition of atmospheric pressure, rainfall and tidal responses.
    Geophys. J. Int. 155 885–98.
    [19] FUKUI, K., OKUBO, S. and TERASHIMA, T. (2005). Electromagnetic Radiation from Rock
    During Uniaxial Compression Testing: The Effects of Rock Characteristics and Test
    Conditions. Rock Mech. Rock Eng. 38 411–23.
    [20] HADJICONTIS, V. and MAVROMATOU, C. (1994). Transient electric signals prior to rock
    failure under uniaxial compression. Geophys. Res. Lett. 21 1687–90.
    [21] MAVROMATOU, C., HADJICONTIS, V., NINOS, D., MASTROGIANNIS, D., HADJICONTIS, E.
    and EFTAXIAS, K. (2004). Understanding the fracture phenomena in inhomogeneous rock
    samples and ionic crystals, by monitoring the electromagnetic emission during their
    deformation. Phys. Chem. Earth Parts ABC 29 353–7.
    [22] TRIANTIS, D., ANASTASIADIS, C. and STAVRAKAS, I. (2008). The correlation of electrical
    charge with strain on stressed rock samples. Nat. Hazards Earth Syst. Sci. 8 1243–8.
    [23] FRID, V., BAHAT, D., GOLDBAUM, J. and RABINOVITCH, A. (2000). Experimental and
    theoretical investigations of electromagnetic radiation induced by rock fracture. Isr. J.
    Earth Sci. 49 9–19.
    [24] VAROTSOS, P. and LAZARIDOU, M. (1991). Latest aspects of earthquake prediction in
    Greece based on seismic electric signals. Tectonophysics 188 321–47.
    [25] BELLA, F., BIAGI, P. F., CAPUTO, M., COZZI, E., DELLA MONICA, G., ERMINI, A.,
    PLASTINO, W. and SGRIGNA, V. (1998). Field strength variations of LF radio waves prior
    to earthquakes in central Italy. Phys. Earth Planet. Inter. 105 279–86.
    [26] HATTORI, K. (2004). ULF Geomagnetic Changes Associated with Large Earthquakes.
    Terr. Atmospheric Ocean. Sci. 15 329.
    [27] PARK, S. K. and FITTERMAN, D. V. (1990). Sensitivity of the telluric monitoring array in
    Parkfield, California, to changes of resistivity. J. Geophys. Res. Solid Earth 95 15557–
    71.
    [28] UYEDA, S., NAGAO, T., ORIHARA, Y., YAMAGUCHI, T. and TAKAHASHI, I. (2000).
    Geoelectric potential changes: Possible precursors to earthquakes in Japan. Proc. Natl.
    Acad. Sci. 97 4561–6.
    [29] YU, S.-B. and KUO, L.-C. (2001). Present-day crustal motion along the Longitudinal
    Valley Fault, eastern Taiwan. Tectonophysics 333 199–217.
    [30] YU, S., KUO, L., RAYMUNDO, P. S. and RAMOS, E. G. (1999). GPS observation of crustal
    deformation in the TaiwanLuzon
    Region. Geophys. Res. Lett. 26 923–6.
    [31] IKEYA, M. (2004). Earthquakes and Animals: From Folk Legends to Science. World
    Scientific.
    [32] SOBOLEV, G. A. (1975). Application of Electric Method to the Tentative Short-Term
    Forecast of Kamchatka Earthquakes. In Earthquake Prediction and Rock Mechanics
    Contributions to Current Research in Geophysics (CCRG) pp 229–35. Birkhäuser, Basel.
    [33] MYACHKIN, V. I., SOBOLEV, G. A., DOLBILKINA, N. A., MOROZOW, V. N. and
    PREOBRAZENSKY, V. B. (1972). The study of variations in geophysical fields near focal
    zones of Kamchatka. Tectonophysics 14 287–93.
    [34] VAROTSOS, P. and ALEXOPOULOS, K. (1984). Physical properties of the variations of the
    electric field of the earth preceding earthquakes, I. Tectonophysics 110 73–98.
    [35] VAROTSOS, P. and ALEXOPOULOS, K. (1984). Physical properties of the variations of the
    electric field of the earth preceding earthquakes. II. determination of epicenter and
    magnitude. Tectonophysics 110 99–125.
    [36] VAROTSOS, P. (2005). The Physics of Seismic Electric Signals. TERRAPUB, Terra
    Scientific Publishing, Tokyo.
    [37] VAROTSOS, P. P. A., SARLIS, D. N. V. and SKORDAS, D. E. S. (2011). Introduction to
    Seismic Electric Signals. In Natural Time Analysis: The New View of Time Springer
    Praxis Books pp 3–115. Springer Berlin Heidelberg.
    [38] LIGHTHILL, S. J. (1996). A Critical Review of Van: Earthquake Prediction from Seismic
    Electrical Signals. World Scientific.
    [39] GELLER, R. J. (1996). Debate on evaluation of the VAN Method: Editor’s introduction.
    Geophys. Res. Lett. 23 1291–3.
    [40] KAGAN, Y. Y. (1996). VAN earthquake predictions‒An attempt at statistical evaluation.
    Geophys. Res. Lett. 23 1315–8.
    [41] KAGAN, Y. Y. and JACKSON, D. D. (1996). Statistical tests of VAN earthquake predictions:
    Comments and reflections. Geophys. Res. Lett. 23 1433–6.
    [42] EFTAXIAS, K., KAPIRIS, P., POLYGIANNAKIS, J., BOGRIS, N., KOPANAS, J.,
    ANTONOPOULOS, G., PERATZAKIS, A. and HADJICONTIS, V. (2001). Signature of pending
    earthquake from electromagnetic anomalies. Geophys. Res. Lett. 28 3321–4.
    [43] EFTAXIAS, K., FRANGOS, P., KAPIRIS, P., POLYGIANNAKIS, J., KOPANAS, J., PERATZAKIS,
    A., SKOUNTZOS, P. and JAGGARD, D. (2004). Review and a model of pre-seismic
    electromagnetic emissions in terms of fractal electrodynamics. Fractals 12 243–73.
    [44] EFTAXIAS, K., KAPIRIS, P., DOLOGLOU, E., KOPANAS, J., BOGRIS, N., ANTONOPOULOS,
    G., PERATZAKIS, A. and HADJICONTIS, V. (2002). EM anomalies before the Kozani
    earthquake: A study of their behavior through laboratory experiments. Geophys. Res. Lett.
    29 69–1.
    [45] EFTAXIAS, K., KAPIRIS, P., POLYGIANNAKIS, J., PERATZAKIS, A., KOPANAS, J.,
    ANTONOPOULOS, G. and RIGAS, D. (2003). Experience of short term earthquake
    precursors with VLF–VHF electromagnetic emissions. Nat. Hazards Earth Syst. Sci. 3
    217–28.
    [46] EFTAXIAS, K., PANIN, V. E. and DERYUGIN, Y. Y. (2007). Evolution-EM signals before
    earthquakes in terms of mesomechanics and complexity. Tectonophysics 431 273–300.
    [47] FRASER-SMITH, A. C., BERNARDI, A., MCGILL, P. R., LADD, M. E., HELLIWELL, R. A.
    and VILLARD, O. G. (1990). Low-frequency magnetic field measurements near the
    epicenter of the Ms 7.1 Loma Prieta Earthquake. Geophys. Res. Lett. 17 1465–8.
    [48] KOPYTENKO, Y. A., MATIASHVILI, T. G., VORONOV, P. M., KOPYTENKO, E. A. and
    MOLCHANOV, O. A. (1993). Detection of ultra-low-frequency emissions connected with
    the Spitak earthquake and its aftershock activity, based on geomagnetic pulsations data
    at Dusheti and Vardzia observatories. Phys. Earth Planet. Inter. 77 85–95.
    [49] KOTSARENKO, A., PÉREZ ENRÍQUEZ, R., LÓPEZ CRUZ-ABEYRO, J. A., KOSHEVAYA, S.,
    GRIMALSKY, V. and ZÚÑIGA, F. R. (2004). Analysis of the ULF electromagnetic emission
    related to seismic activity, Teoloyucan geomagnetic station, 1998-2001. Nat Hazards
    Earth Syst Sci 4 679–84.
    [50] KAPIRIS, P. G., EFTAXIAS, K. A. and CHELIDZE, T. L. (2004). Electromagnetic Signature
    of Prefracture Criticality in Heterogeneous Media. Phys. Rev. Lett. 92 065702.
    [51] CONTOYIANNIS, Y. F., KAPIRIS, P. G. and EFTAXIAS, K. A. (2005). Monitoring of a
    preseismic phase from its electromagnetic precursors. Phys. Rev. E 71 066123.
    [52] LIU, J. Y., CHUO, Y. J., SHAN, S. J., TSAI, Y. B., CHEN, Y. I., PULINETS, S. A. and YU, S.
    B. (2004). Pre-earthquake ionospheric anomalies registered by continuous GPS TEC
    measurements. Ann. Geophys. 22 1585–93.
    [53] OUZOUNOV, D., PULINETS, S., ROMANOV, A., ROMANOV, A., TSYBULYA, K., DAVIDENKO,
    D., KAFATOS, M. and TAYLOR, P. (2011). Atmosphere-ionosphere response to the M9
    Tohoku earthquake revealed by multi-instrument space-borne and ground observations:
    Preliminary results. Earthq. Sci. 24 557–64.
    [54] PULINETS, S. (2004). Ionospheric precursors of earthquakes; recent advances in theory
    and practical applications. Terr. Atmospheric Ocean. Sci. 15 413–35.
    [55] UYEDA, S., HAYAKAWA, M., NAGAO, T., MOLCHANOV, O., HATTORI, K., ORIHARA, Y.,
    GOTOH, K., AKINAGA, Y. and TANAKA, H. (2002). Electric and magnetic phenomena
    observed before the volcano-seismic activity in 2000 in the Izu Island Region, Japan.
    Proc. Natl. Acad. Sci. 99 7352–5.
    [56] HAYAKAWA, M., HATTORI, K. and OHTA, K. (2007). Monitoring of ULF (Ultra-Low-
    Frequency) Geomagnetic Variations Associated with Earthquakes. Sensors 7 1108–22.
    [57] KOTSARENKO, A., MOLCHANOV, O., HAYAKAWA, M., KOSHEVAYA, S., GRIMALSKY, V.,
    PÉREZ ENRÍQUEZ, R. and LÓPEZ CRUZ-ABEYRO, J. A. (2005). Investigation of ULF
    magnetic anomaly during Izu earthquake swarm and Miyakejima volcano eruption at
    summer 2000, Japan. Nat Hazards Earth Syst Sci 5 63–9.
    [58] CARPINTERI, A., CARDONE, F. and LACIDOGNA, G. (2010). Energy Emissions from
    Failure Phenomena: Mechanical, Electromagnetic, Nuclear. Exp. Mech. 50 1235–43.
    [59] LACIDOGNA, G., CARPINTERI, A., MANUELLO, A., DURIN, G., SCHIAVI, A., NICCOLINI, G.
    and AGOSTO, A. (2011). Acoustic and Electromagnetic Emissions as Precursor
    Phenomena in Failure Processes. Strain 47 144–52.
    [60] SHINBROT, T., KIM, N. H. and THYAGU, N. N. (2012). Electrostatic precursors to granular
    slip events. Proc. Natl. Acad. Sci. 109 10806–10.
    [61] TSUTSUMI, A., TANAKA, S., SHIRAI, N. and ENOMOTO, Y. (2003). Electric Signals
    Accompanying Fracture of Granite. Jpn. J. Appl. Phys. 42 5208.
    [62] FREUND, F. (2007). Pre-earthquake signals – Part I: Deviatoric stresses turn rocks into a
    source of electric currents. Nat. Hazards Earth Syst. Sci. 7 535–41.
    [63] FREUND, F. (2000). Time-resolved study of charge generation and propagation in igneous
    rocks. J. Geophys. Res. Solid Earth 105 11001–19.
    [64] FREUND, F. (2010). Toward a unified solid state theory for pre-earthquake signals. Acta
    Geophys. 58 719–66.
    [65] FREUND, F. and SORNETTE, D. (2007). Electro-magnetic earthquake bursts and critical
    rupture of peroxy bond networks in rocks. Tectonophysics 431 33–47.
    [66] HSU, H.-L. (2013). Taiwan Natural Electromagnetic Field Observation. Doctor of
    Science, National Central University, Taoyuan, Taiwan.
    [67] TELESCA, L., LOVALLO, M., ROMANO, G., KONSTANTINOU, K. I., HSU, H.-L. and CHEN,
    C. (2014). Using the informational Fisher–Shannon method to investigate the influence
    of long-term deformation processes on geoelectrical signals: An example from the
    Taiwan orogeny. Phys. Stat. Mech. Its Appl. 414 340–51.
    [68] TSAI, Y.-B., LIU, J.-Y., MA, K.-F., YEN, H.-Y., CHEN, K.-S., CHEN, Y.-I. and LEE, C.-P. (2006). Precursory phenomena associated with the 1999 Chi-Chi earthquake in Taiwan
    as identified under the iSTEP program. Phys. Chem. Earth Parts ABC 31 365–77.
    [69] TSAI, Y.-B., LIU, J.-Y., MA, K.-F., YEN, H.-Y., CHEN, K.-S., CHEN, Y.-I. and LEE, C.-P.
    (2004). Preliminary results of the iSTEP program on integrated search for Taiwan
    earthquake precursors. Terr. Atmospheric Ocean. Sci. 15 545–562.
    [70] LIU, J. Y., CHEN, Y. I., CHUO, Y. J. and TSAI, H. F. (2001). Variations of ionospheric total
    electron content during the ChiChi
    earthquake. Geophys. Res. Lett. 28 1383–6.
    [71] LIU, J.-Y., CHEN, Y.-I., JHUANG, H.-K. and LIN, Y.-H. (2004). Ionospheric foF2 and TEC
    anomalous days associated with M ≥ 5.0 earthquakes in Taiwan during 1997-1999. Terr.
    Atmospheric Ocean. Sci. 15 371–83.
    [72] WANG, J. H. (1989). The Taiwan telemetered seismographic network. Phys. Earth Planet.
    Inter. 58 9–18.
    [73] SHIN, T.-C. (1992). Some implications of Taiwan tectonic features from the data collected
    by the Central Weather Bureau Seismic Network. Meteorol. Bull. CWB 38 23–48.
    [74] SHIN, T.-C., CHANG, C.-H., PU, H.-C., LIN, H.-W. and LEU, P.-L. (2013). The
    Geophysical Database Management System in Taiwan. Terr. Atmospheric Ocean. Sci. 24
    11–8.
    [75] BOWMAN, D. D., OUILLON, G., SAMMIS, C. G., SORNETTE, A. and SORNETTE, D. (1998).
    An observational test of the critical earthquake concept. J. Geophys. Res. 103 24,359-
    24,372.
    [76] MOLCHAN, G. M. (1997). Earthquake prediction as a decision-making problem. Pure
    Appl. Geophys. 149 233–47.
    [77] SOKLAKOV, A. N. (2002). Occam’s Razor as a Formal Basis for a Physical Theory. Found.
    Phys. Lett. 15 107–35.
    [78] SANDERS, C. O. (1993). Interaction of the San Jacinto and San Andreas Fault Zones,
    Southern California: Triggered Earthquake Migration and Coupled Recurrence Intervals.
    Science 260 973–6.
    [79] WU, Y.-H., CHEN, C. and RUNDLE, J. B. (2008). Detecting precursory earthquake
    migration patterns using the pattern informatics method. Geophys. Res. Lett. 35 L19304.
    [80] WU, Y.-H., CHEN, C. and RUNDLE, J. B. (2011). Precursory small earthquake migration
    patterns. Terra Nova 23 369–374.
    [81] OGAWA, T., OIKE, K. and MIURA, T. (1985). Electromagnetic radiations from rocks. J.
    Geophys. Res. Atmospheres 90 6245–9.
    [82] BERTRAND, E., UNSWORTH, M., CHIANG, C.-W., CHEN, C.-S., CHEN, C.-C., WU, F.,
    TÜRKOĞLU, E., HSU, H.-L. and HILL, G. (2009). Magnetotelluric evidence for thickskinned
    tectonics in central Taiwan. Geology 37 711–4.
    [83] BERTRAND, E. A., UNSWORTH, M. J., CHIANG, C.-W., CHEN, C.-S., CHEN, C.-C., WU, F.
    T., TÜRKOĞLU, E., HSU, H.-L. and HILL, G. J. (2012). Magnetotelluric imaging beneath
    the Taiwan orogen: An arc-continent collision. J. Geophys. Res. Solid Earth 117 B01402.
    [84] HUANG, Q. (2011). Rethinking earthquake-related DC-ULF electromagnetic phenomena:
    towards a physics-based approach. Nat. Hazards Earth Syst. Sci. 11 2941–9.
    [85] ZECHAR, J. D. and JORDAN, T. H. (2008). Testing alarm-based earthquake predictions.
    Geophys. J. Int. 172 715–24.
    [86] HATTORI, K., HAN, P., YOSHINO, C., FEBRIANI, F., YAMAGUCHI, H. and CHEN, C.-H. (2013). Investigation of ULF Seismo-Magnetic Phenomena in Kanto, Japan During
    2000–2010: Case Studies and Statistical Studies. Surv. Geophys. 34 293–316.
    [87] HAN, P., HATTORI, K., ZHUANG, J., CHEN, C.-H., LIU, J.-Y. and YOSHIDA, S. (2017).
    Evaluation of ULF seismo-magnetic phenomena in Kakioka, Japan by using Molchan’s
    error diagram. Geophys. J. Int. 208 482–90.
    [88] BUTTERWORTH, S. (1930). On the theory of filter amplifiers. Wirel. Eng. 7 536–41.
    [89] YOSHINO, T. and TOMIZAWA, I. (1989). Observation of low-frequency electromagnetic
    emissions as precursors to the volcanic eruption at Mt. Mihara during November, 1986.
    Phys. Earth Planet. Inter. 57 32–9.
    [90] WALTON, A. J. (1977). Triboluminescence. Adv. Phys. 26 887–948.
    [91] YAMADA, I., MASUDA, K. and MIZUTANI, H. (1989). Electromagnetic and acoustic
    emission associated with rock fracture. Phys. Earth Planet. Inter. 57 157–68.
    [92] NITSAN, U. (1977). Electromagnetic emission accompanying fracture of quartz-bearing
    rocks. Geophys. Res. Lett. 4 333–6.
    [93] MIZUTANI, H., ISHIDO, T., YOKOKURA, T. and OHNISHI, S. (1976). Electrokinetic
    phenomena associated with earthquakes. Geophys. Res. Lett. 3 365–8.
    [94] ISHIDO, T. and MIZUTANI, H. (1981). Experimental and theoretical basis of electrokinetic
    phenomena in rock-water systems and its applications to geophysics. J. Geophys. Res.
    Solid Earth 86 1763–75.
    [95] IKEYA, M., YAMANAKA, C., MATTSUDA, T., SASAOKA, H., OCHIAI, H., HUANG, Q.,
    OHTANI, N., KOMURANANI, T., OHTA, M., OHNO, Y. and NAKAGAWA, T. (2000).
    Electromagnetic pulses generated by compression of granitic rocks and animal behavior. Episodes 23 262–5.
    [96] SASAOKA, H., YAMANAKA, C. and IKEYA, M. (1998). Measurements of electric potential
    variation by piezoelectricity of granite. Geophys. Res. Lett. 25 2225–8.
    [97] SORNETTE, A. and SORNETTE, D. (1990). Earthquake rupture as a critical point:
    consequences for telluric precursors. Tectonophysics 179 327–34.
    [98] STAVRAKAS, I., TRIANTIS, D., AGIOUTANTIS, Z., MAURIGIANNAKIS, S., SALTAS, V.,
    VALLIANATOS, F. and CLARKE, M. (2004). Pressure stimulated currents in rocks and their
    correlation with mechanical properties. Nat. Hazards Earth Syst. Sci. 4 563–7.
    [99] VALLIANATOS, F. and TRIANTIS, D. (2008). Scaling in Pressure Stimulated Currents
    related with rock fracture. Phys. Stat. Mech. Its Appl. 387 4940–6.
    [100] FREUND, F. (2003). Rocks that crackle and sparkle and glow : Strange pre-earthquake
    phenomena. J. Sci. Explor. 17 37–71.
    [101] FREUND, F. and PILORZ, S. (2012). Electric currents in the Earth crust and the generation
    of pre-earthquake ULF signals. H. Masashi, ed Front. Earthq. Predict. Stud. 464–508.
    [102] FREUND, F., KULAHCI, I. G., CYR, G., LING, J., WINNICK, M., TREGLOAN-REED, J. and
    FREUND, M. M. (2009). Air ionization at rock surfaces and pre-earthquake signals. J.
    Atmospheric Sol.-Terr. Phys. 71 1824–34.
    [103] BURRIDGE, R. and KNOPOFF, L. (1967). Model and theoretical seismicity. Bull. Seismol.
    Soc. Am. 57 341–71.
    [104] ABAIMOV, S. G., TURCOTTE, D. L., SHCHERBAKOV, R. and RUNDLE, J. B. (2007).
    Recurrence and interoccurrence behavior of self-organized complex phenomena.
    Nonlinear Process. Geophys. 14 455–64.
    [105] ANDERSEN, J. V., SORNETTE, D. and LEUNG, K. (1997). Tricritical Behavior in Rupture
    Induced by Disorder. Phys. Rev. Lett. 78 2140–3.
    [106] BROWN, S. R., SCHOLZ, C. H. and RUNDLE, J. B. (1991). A simplified springblock
    model
    of earthquakes. Geophys. Res. Lett. 18 215–8.
    [107] CAO, T. and AKI, K. (1984). Seismicity simulation with a mass-spring model and a
    displacement hardening-softening friction law. Pure Appl. Geophys. 122 10–24.
    [108] CARLSON, J. M. (1991). Two-dimensional model of a fault. Phys. Rev. A 44 6226–32.
    [109] CARLSON, J. M., LANGER, J. S., SHAW, B. E. and TANG, C. (1991). Intrinsic properties of
    a Burridge-Knopoff model of an earthquake fault. Phys. Rev. A 44 884–97.
    [110] CARLSON, J. M., LANGER, J. S. and SHAW, B. E. (1994). Dynamics of earthquake faults.
    Rev. Mod. Phys. 66 657–70.
    [111] CARLSON, J. M. and LANGER, J. S. (1989). Mechanical model of an earthquake fault.
    Phys. Rev. A 40 6470–84.
    [112] CARTWRIGHT, J. H. E., HERNÁNDEZ-GARCÍA, E. and PIRO, O. (1997). Burridge-Knopoff
    models as elastic excitable media. Phys. Rev. Lett. 79 527–30.
    [113] CHEN, C.-C., WANG, J.-H. and HUANG, W.-J. (2012). Material decoupling as a
    mechanism of aftershock generation. Tectonophysics 546–547 56–9.
    [114] CHEN, C.-C. and WANG, J.-H. (2010). One-dimensional dynamical modeling of slip
    pulses. Tectonophysics 487 100–4.
    [115] ERICKSON, B., BIRNIR, B. and LAVALLÉE, D. (2008). A model for aperiodicity in
    earthquakes. Nonlinear Process. Geophys. 15 1–12.
    [116] ERICKSON, B., BIRNIR, B. and LAVALLÉE, D. (2011). Periodicity, chaos and localization
    in a Burridge–Knopoff model of an earthquake with rate-and-state friction. Geophys. J.
    Int. 187 178–198.
    [117] HASUMI, T., CHEN, C., AKIMOTO, T. and AIZAWA, Y. (2010). The Weibull–log Weibull
    transition of interoccurrence time for synthetic and natural earthquakes. Tectonophysics
    485 9–16.
    [118] MITSUI, Y. and COCCO, M. (2010). The role of porosity evolution and fluid flow in
    frictional instabilities: A parametric study using a spring-slider dynamic system. Geophys.
    Res. Lett. 37 L23305.
    [119] NUSSBAUM, J. and RUINA, A. (1987). A two degree-of-freedom earthquake model with
    static/dynamic friction. Pure Appl. Geophys. 125 629–56.
    [120] WANG, J. (2012). Some intrinsic properties of the twodimensional
    dynamical springslider
    model of earthquake faults. Bull. Seismol. Soc. Am. 102 822–35.
    [121] WANG, J. H. (2008). One-dimensional dynamical modeling of earthquakes: A review.
    Terr. Atmospheric Ocean. Sci. 19 183–203.
    [122] WANG, J.-H. (2009). A numerical study of comparison of two one-state-variable, rateand
    state-dependent friction evolution laws. Earthq. Sci. 22 197–204.
    [123] WANG, J.-H. and HWANG, R.-D. (2001). One-dimensional dynamic simulations of slip
    complexity of earthquake faults. Earth Planets Space 53 91–100.
    [124] YOSHIDA, S. and KATO, N. (2003). Episodic aseismic slip in a two-degree-of-freedom
    block-spring model. Geophys. Res. Lett. 30 1681.
    [125] TAKEUCHI, A., LAU, B. W. S. and FREUND, F. T. (2006). Current and surface potential induced by stress-activated positive holes in igneous rocks. Phys. Chem. Earth Parts
    ABC 31 240–7.
    [126] NABAWY, B. S. (2015). Impacts of the pore- and petro-fabrics on porosity exponent and
    lithology factor of Archie’s equation for carbonate rocks. J. Afr. Earth Sci. 108 101–14.
    [127] NENOVSKI, P. (2016). Unipolar magnetic field pulses as transient signals prior to the 2009
    Aquila earthquake shock. ArXiv160202985 Phys.
    [128] SCOVILLE, J., HERAUD, J. and FREUND, F. (2015). Pre-earthquake magnetic pulses. Nat
    Hazards Earth Syst Sci 15 1873–80.
    [129] POTIRAKIS, S. M., KARADIMITRAKIS, A. and EFTAXIAS, K. (2013). Natural time analysis
    of critical phenomena: The case of pre-fracture electromagnetic emissions. Chaos
    Interdiscip. J. Nonlinear Sci. 23 023117.
    [130] FREUND, F. T., TAKEUCHI, A., LAU, B. W. and HALL, C. G. (2004). Positive holes and
    their role during the build-up of stress prior to the Chi-Chi earthquake. In International
    Conference-in Commemoration of 5th Anniversary of the Chi-Chi Earthquake Taipei,
    Taiwan.
    [131] YOSHIDA, S., CLINT, O. C. and SAMMONDS, P. R. (1998). Electric potential changes prior
    to shear fracture in dry and saturated rocks. Geophys. Res. Lett. 25 1577–80.

    QR CODE
    :::