| 研究生: |
應劭玄 Shao-Hsuan Ying |
|---|---|
| 論文名稱: |
在馬可夫轉換模型下的資產配置 Portfolio Allocation with Regime Switching Models |
| 指導教授: |
傅承德
鄧惠文 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 54 |
| 中文關鍵詞: | 資產配置 、均值-方差分析 、馬可夫轉換模型 、GARCH模型 、厚尾分佈 |
| 外文關鍵詞: | portfolio allocation, mean-variance analysis, regime switching models, GARCH, fat tail distribution |
| 相關次數: | 點閱:21 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
馬可維茲的均值方差理論是資產配置最初的架構,但是用這個架構可能會面對到一些挑戰像是對於最佳權重的估計誤差太大,為了要解決估計誤差的問題,我們透過馬可夫轉換模型去改善輸入資產的報酬,更確切來說,這個方法是用當期機率 (filtering probabilities) 和 Clarke & de Silva (1998) 去改善輸入資產的報酬。最後我們利用元大投信在台灣發行的四檔有名股票型基金去做回測並算出了考慮交易成本的策略統計量,結果顯示當資料有厚尾分佈和 GARCH 性質時,誤差項服從學生t分佈的馬可夫轉換 GARCH 模型有最好的投資組合報酬相較於其他方法。
Markowitz mean-variance framework is a debut for modern portfolio allocation, but using it may encounters several challenges such as the optimal weight is sensitive to the estimation errors of the model. To overcome the problem of estimation errors, we improve inputted log-returns using regime switching models. This method provides a way to estimate portfolio weight using filtering probabilities and Clarke and de Silva (1998). Finally, we conduct a backtesting study using four famous ETFs in Taiwan issued by Yuanta Securities Co., Ltd. and report the portfolio's strategy summary statistics after accounting for transaction costs. The results show that when the data has fat tail distribution and GARCH effect, a regime switching GARCH(1,1) model with Student's t innovations dominates the others methods in terms of our portfolio allocation.
Ang, A. and Bekaert, G. (2002) International asset allocation with regime shifts. The Review of Financial Studies, 15(4) 1137-1187.
Black, F. and Litterman, R. (1992) Global portfolio optimization. Financial Analysts Journal, 48(5) 28-48.
Chopra, V. K., Hensel, C. R. and Turner, A. L. (1993) Massaging mean-variance inputs: Returns from alternative global investment strategies in the 1980s. Journal of Finance, 39(7) 845-855.
Clarke, R. G. and de Silva, H. (1998) State-dependent asset allocation. The Journal of Portfolio Management, 24(2) 57-64.
Gilli, M. and Schumann, E. (2009) An empirical analysis of alternative portfolio selection criteria.
Gilli, M., Schumann, E., di Tollo, G. and Cabej, G. (2011) Constructing 130/30-portfolios with the Omega ratio. Journal of Asset Management, 12(2) 94-108.
Gray, S. F. (1996) Modeling the conditional distribution of interest rates as a regime-switching process. Journal of Financial Economics, 42(1) 27-62.
Guidolin, M. and Timmermann, A. (2007) Asset allocation under multivariate regime switching. Journal of Economic Dynamics and Control, 31(11) 3503-3544.
Hamilton, J. (1989) A new approach to the economic analysis of nonstationary time series and the business cycle. Econometrica, 57(2) 357-384.
Jiang, P., Liu, Q. and Tse, Y. (2015) International asset allocation with regime switching: Evidence from the ETFs. Asia-Pacific Journal of Financial Studies, 44(5) 661-687.
Kuan, C. M. (2002) Lecture on the Markov switching model.
Markowitz, H. (1952) Portfolio selection. The Journal of Finance, 7(1) 77-91.
Michaud, R. O. (1989) The Markowitz optimization enigma: Is "optimized" optimal? Financial Analysts Journal, 45(1) 31-42.
Quandt, R. E. (1972) A new approach to estimating switching regressions. Journal of the American Statistical Association, 67(338) 306-310.
Simi, W. W. (2013) Strategic asset allocation and Markov regime switch with GARCH. Journal of Business and Economic Studies, 19(1) 41-51.
So, M. K. P., Lam, K. and Li, W. K. (1998) A stochastic volatility model with Markov switching. Journal of Business and Economic Statistics, 16(2) 244-253.
Sortino, F. A. and Price, L. N. (1994) Performance measurement in a downside risk framework. The Journal of Investing, 3(3) 59-64.