| 研究生: |
陳宏澤 Hung-Tse Chen |
|---|---|
| 論文名稱: |
應用於高穩定性反式錫鈣鈦礦太陽能電池之氧化亞錫電洞傳遞材料研究 Highly stability Inverted Tin Perovskite Solar Cell Using Tin(II) oxide as the Hole Transport Material |
| 指導教授: |
吳春桂
Chun-Guey Wu 江建宏 Chien‐Hung Chiang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 158 |
| 中文關鍵詞: | 錫鈣鈦礦太陽能電池 、電洞傳遞層 、無機電洞傳遞層 、氧化亞錫 |
| 外文關鍵詞: | Tin Perovskite solar cell, Hole transport material, Inorganic hole transport material, Tin(II) oxide |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
反式錫鈣鈦礦太陽能電池(Tin perovskite solar cells, 簡稱TPSCs)中錫鈣鈦礦吸收層容易受到水氣分解使元件長時間穩定性不佳,部分原因是使用會吸水的鹽類摻雜之有機電洞傳遞層(HTL,如:PTAA、PEDOT:PSS),因此開發不受水氣影響且具有熱穩定、寬的能隙、高的穿透度和高電洞遷移率等之無機HTLs成為重要研究主題,但無機材料與錫鈣鈦礦層存在介面相容性的問題須解決。本研究以真空熱蒸鍍製備SnO膜做為電洞傳遞層,並透過UV-O3後處理SnO降低Valence band至-5.33 eV與本實驗室所使用錫鈣鈦礦層FA0.98EDA0.01SnI3的Valence band -5.80 eV接近,以減少電洞傳遞時的能量損失,SnO 做為電洞傳遞層所組裝成元件的光伏表現中為 Jsc = 20.99 mA/cm2,Voc = 0.63 V,FF = 52 %,PCE =6.97%。為解決SnO與錫鈣鈦礦介面的問題。使用具有兩性性質高分子PDTON做為電洞傳遞層與錫鈣鈦礦層間的介面層。從FTIR光譜可見加入SnI2之PDTON的ester C-O stretching 和amine C-N stretching,兩者皆往高波數位移,顯示PDTON上之氧與胺基的孤對電子,能與錫鈣鈦礦層未飽和配位的Sn2+作用。經SCLC理論計算得到SnO/PDTON電洞遷移率為1.74*10-4 cm2V-1s-1大於PEDOT:PSS的電洞遷移率1.45*10-4 cm2V-1s-1,FA0.98EDA0.01SnI3沉積於玻璃或SnO/PDTON之TRPL數據顯示,載子生命期由 0.97 ns 縮短至0.25 ns,代表PDTON使SnO能更有效的萃取傳遞錫鈣鈦礦的電洞。以SnO/PDTON 做為電洞傳遞層所組裝之元件的光伏參數為 Jsc = 23.39 mA/cm2,Voc = 0.59 V,FF = 67%,PCE =9.19%,與SnO做為電洞傳遞層所組裝之元件相比,FF得到明顯變化。而以PEDOT:PSS做為電洞傳遞層所組裝之元件光伏參數為 Jsc = 24.57 mA/cm2,Voc = 0.53 V,FF = 68%,PCE =8.93%。以SnO/PDTON做為電洞傳遞層所組裝之元件在沒有封裝的情況下放置在氮氣手套箱中並在室內光照下放置 3240 小時,仍維持其原始效率的 76%,元件表現良好的穩定性,而PEDOT:PSS做為電洞傳遞層所組裝之元件在相同條件下僅維持原效率66%。可見SnO/PDTON與PEDOT:PSS之光伏表現相似。而大氣下穩定性測試中,將元件置於溫度27℃、相對濕度40%的環境中, SnO/PDTON做為電洞傳遞層所組裝之元件經過兩小時仍能維持原效率的64%,而PEDOT:PSS做為電洞傳遞層所組裝之元件在相同條件下僅維持原效率8%,顯現無機材料做為電洞傳遞層的穩定性優勢。
The perovskite absorber layer in tin perovskite solar cells(TPSCs) is susceptible decomposition by water, partically due to the hole transoorting layer(HTL) (e.g., PTAA, PEDOT:PSS)was generally doped with hyderophilic salt.Searching for high stability, transpartent inorganic HTL is an important work for advancing TPSCs. Moreover, these may have an interacial problem between inorganic HTLs and perovskite layers. In this study, SnO films were prepared by vacuum thermal evaporation as the hole transport layer, and the valence band of SnO was lowered to -5.33 eV which is close to the valence band of -5.57 eV of the perovskite layer FA0.98EDA0.01SnI3 used in our laboratory after treat with UV-O3 for 20 min, to reduce the energy loss during hole transport. The photovoltaic performance of the device base on SnO HTL is Jsc = 20.99 mA/cm2, Voc = 0.63 V, FF = 52%, and PCE = 6.97%. To solve the interface problem between SnO and perovskite. The amphiphilic polymer PDTON was used as the interface agent. FTIR spectra show the ester C-O stretching and amine C-N stretching shifted to low wavenumbers, when mixed with SnI2 indicating that the lone pair of electrons on the oxygen and amine groups of PDTON can interact with the unsaturated coordinated Sn2+ in tin perovskite. The TRPL data of FA0.98EDA0.01SnI3 deposited in glass or SnO/PDTON showed that the carrier lifetime is 0.97 ns and 0.25 ns, respectively which means that SnO/PDTON can effectively extract the holes of tin perovskite. The photovoltaic parameters of SnO/PDTON based device are Jsc = 23.39 mA/cm2, Voc = 0.59 V, FF = 67%, and PCE = 9.19%. The PV parameters of the PEDOT:PSS based device are Jsc = 24.57 mA/cm2, Voc = 0.53 V, FF = 68%, and PCE = 8.93%. When device used SnO/PDTON HTL was placed in the nitrogen filled glove box without encapsulating and under room light illumination for 3240 hours, 76% of its original efficiency was maintained. While cell based on PEDOT:PSS HTL lost 34% of the initial efficiency. In the atmospheric stability test, when the device was placed in the environment of 27℃ and 40% relative humidity, SnO/PDTON based device maintained 64% of its original efficiency after two hours, whereas PEDOT:PSS based device maintained only 8% of its original efficiency under the same conditions, which demonstrates the stability advantage of inorganic materials as the hole propagation layer.
1. Liao, W.; Zhao, D.; Yu, Y.; Grice, C. R.; Wang, C.; Cimaroli, A. J.; Schulz, P.; Meng, W.; Zhu, K.; Xiong, R. G.; Yan, Y., Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22. Adv Mater 2016, 28 (42), 9333-9340.
2. Kim, M.; Jeong, J.; Lu, H.; Lee, T. K.; Eickemeyer, F. T.; Liu, Y.; Choi, I. W.; Choi, S. J.; Jo, Y.; Kim, H. B.; Mo, S. I.; Kim, Y. K.; Lee, H.; An, N. G.; Cho, S.; Tress, W. R.; Zakeeruddin, S. M.; Hagfeldt, A.; Kim, J. Y.; Grätzel, M.; Kim, D. S., Conformal Quantum dot-SnO(2) Layers as Electron Transporters for Efficient Perovskite Solar Cells. Science 2022, 375 (6578), 302-306.
3. Jokar, E.; Chien, C.-H.; Fathi, A.; Rameez, M.; Chang, Y.-H.; Diau, E. W.-G., Slow Surface Passivation and Crystal Relaxation with Additives to Improve Device Performance and Durability for Tin-based Perovskite Solar Cells. Energy & Environmental Science 2018, 11 (9), 2353-2362.
4. Yu, B.-B.; Chen, Z.; Zhu, Y.; Wang, Y.; Han, B.; Chen, G.; Zhang, X.; Du, Z.; He, Z., Heterogeneous 2D/3D Tin-Halides Perovskite Solar Cells with Certified Conversion Efficiency Breaking 14%. Advanced Materials 2021, 33 (36), 2102055.
5. Arumugam, G. M.; Karunakaran, S. K.; Liu, C.; Zhang, C.; Guo, F.; Wu, S.; Mai, Y., Inorganic Hole Transport Layers in Inverted Perovskite Solar Cells: A Review. Nano Select 2021, 2 (6), 1081-1116.
6. Xie, F.; Chen, C.-C.; Wu, Y.; Li, X.; Cai, M.; Liu, X.; Yang, X.; Han, L., Vertical Recrystallization for Highly Efficient and Stable Formamidinium-based Inverted-structure Perovskite Solar Cells. Energy & Environmental Science 2017, 10 (9), 1942-1949.
7. Sun, W.; Ye, S.; Rao, H.; Li, Y.; Liu, Z.; Xiao, L.; Chen, Z.; Bian, Z.; Huang, C., Room-temperature and Solution-processed Copper Iodide as the Hole Transport Layer for Inverted Planar Perovskite Solar Cells. Nanoscale 2016, 8 (35), 15954-15960.
8. Zhang, H.; Wang, H.; Zhu, H.; Chueh, C.-C.; Chen, W.; Yang, S.; Jen, A. K.-Y., Low-Temperature Solution-Processed CuCrO2 Hole-Transporting Layer for Efficient and Photostable Perovskite Solar Cells. Advanced Energy Materials 2018, 8 (13), 1702762.
9. Sun, W.; Li, Y.; Ye, S.; Rao, H.; Yan, W.; Peng, H.; Li, Y.; Liu, Z.; Wang, S.; Chen, Z.; Xiao, L.; Bian, Z.; Huang, C., High-performance Inverted Planar Heterojunction Perovskite Solar Cells Based on a Solution-processed CuOx Hole Transport Layer. Nanoscale 2016, 8 (20), 10806-10813.
10. Rao, H.; Sun, W.; Ye, S.; Yan, W.; Li, Y.; Peng, H.; Liu, Z.; Bian, Z.; Huang, C., Solution-Processed CuS NPs as an Inorganic Hole-Selective Contact Material for Inverted Planar Perovskite Solar Cells. ACS Applied Materials & Interfaces 2016, 8 (12), 7800-7805.
11. Yao, X.; Qi, J.; Xu, W.; Jiang, X.; Gong, X.; Cao, Y., Cesium-Doped Vanadium Oxide as the Hole Extraction Layer for Efficient Perovskite Solar Cells. ACS Omega 2018, 3 (1), 1117-1125.
12. https://www.nrel.gov/grid/solar-resource/spectra-am1.5.html.
13. Li, Y.; Ding, B.; Chu, Q.-Q.; Yang, G.-J.; Wang, M.; Li, C.-X.; Li, C.-J., Ultra-high Open-circuit Voltage of Perovskite Solar Cells Induced by Nucleation Thermodynamics on Rough Substrates. Scientific Reports 2017, 7 (1), 46141.
14. Hao, F.; Stoumpos, C. C.; Cao, D. H.; Chang, R. P. H.; Kanatzidis, M. G., Lead-free Solid-state Organic–inorganic Halide Perovskite Solar Cells. Nature Photonics 2014, 8 (6), 489-494.
15. Kumar, M. H.; Dharani, S.; Leong, W. L.; Boix, P. P.; Prabhakar, R. R.; Baikie, T.; Shi, C.; Ding, H.; Ramesh, R.; Asta, M.; Graetzel, M.; Mhaisalkar, S. G.; Mathews, N., Lead-Free Halide Perovskite Solar Cells with High Photocurrents Realized Through Vacancy Modulation. Advanced Materials 2014, 26 (41), 7122-7127.
16. Zhu, Z.; Chueh, C. C.; Li, N.; Mao, C.; Jen, A. K., Realizing Efficient Lead-Free Formamidinium Tin Triiodide Perovskite Solar Cells via a Sequential Deposition Route. Adv Mater 2018, 30 (6).
17. Lee, S. J.; Shin, S. S.; Kim, Y. C.; Kim, D.; Ahn, T. K.; Noh, J. H.; Seo, J.; Seok, S. I., Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnF2–Pyrazine Complex. Journal of the American Chemical Society 2016, 138 (12), 3974-3977.
18. Tseng, Z.-L.; Chen, L.-C.; Chiang, C.-H.; Chang, S.-H.; Chen, C.-C.; Wu, C.-G., Efficient Inverted-type Perovskite Solar Cells Using UV-ozone Treated MoOx and WOx as Hole Transporting Layers. Solar Energy 2016, 139, 484-488.
19. Wang, L.; Chen, M.; Yang, S.; Uezono, N.; Miao, Q.; Kapil, G.; Baranwal, A. K.; Sanehira, Y.; Wang, D.; Liu, D.; Ma, T.; Ozawa, K.; Sakurai, T.; Zhang, Z.; Shen, Q.; Hayase, S., SnOx as Bottom Hole Extraction Layer and Top In Situ Protection Layer Yields over 14% Efficiency in Sn-Based Perovskite Solar Cells. ACS Energy Letters 2022, 7 (10), 3703-3708.
20. Zhang, Q.; Wang, W.-T.; Chi, C.-Y.; Wächter, T.; Chen, J.-W.; Tsai, C.-Y.; Huang, Y.-C.; Zharnikov, M.; Tai, Y.; Liaw, D.-J., Toward a Universal Polymeric Material for Electrode Buffer Layers in Organic and Perovskite Solar Cells and Organic Light-emitting Diodes. Energy & Environmental Science 2018, 11 (3), 682-691.
21. Zhang, Y.; Zhang, S.; Wu, S.; Chen, C.; Zhu, H.; Xiong, Z.; Chen, W.; Chen, R.; Fang, S.; Chen, W., Bifunctional Molecular Modification Improving Efficiency and Stability of Inverted Perovskite Solar Cells. Advanced Materials Interfaces 2018, 5 (19), 1800645.
22. Azcatl, A.; Kc, S.; Peng, X.; Lu, N.; McDonnell, S.; Qin, X.; de Dios, F.; Addou, R.; Kim, J.; Kim, M. J.; Cho, K.; Wallace, R. M., HfO2 on UV–O3 exposed transition metal dichalcogenides: interfacial reactions study. 2D Materials 2015, 2 (1), 014004.
23. Yu, B.-B.; Liao, M.; Zhu, Y.; Zhang, X.; Du, Z.; Jin, Z.; Liu, D.; Wang, Y.; Gatti, T.; Ageev, O.; He, Z., Oriented Crystallization of Mixed-Cation Tin Halides for Highly Efficient and Stable Lead-Free Perovskite Solar Cells. Advanced Functional Materials 2020, 30 (24), 2002230.
24. Liu, P.; Wang, W.; Liu, S.; Yang, H.; Shao, Z., Fundamental Understanding of Photocurrent Hysteresis in Perovskite Solar Cells. Advanced Energy Materials 2019, 9 (13), 1803017.
25. Liu, C.; Tu, J.; Hu, X.; Huang, Z.; Meng, X.; Yang, J.; Duan, X.; Tan, L.; Li, Z.; Chen, Y., Enhanced Hole Transportation for Inverted Tin-Based Perovskite Solar Cells with High Performance and Stability. Advanced Functional Materials 2019, 29 (18), 1808059.
26. Syed, A. M.; Iqbal, A. K.; Waheed, A. Y.; Khasan, S. K., Space Charge–Limited Current Model for Polymers. In Conducting Polymers, Faris, Y., Ed. IntechOpen: Rijeka, 2016; p Ch. 5.
27. Rutledge, S. A.; Helmy, A. S., Carrier Mobility Enhancement in Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) Having Undergone Rapid Thermal Annealing. Journal of Applied Physics 2013, 114 (13).
28. Solola, G. T.; Klopov, M.; Akinami, J. O.; Afolabi, T. A.; Karazhanov, S. Z.; Adebayo, G., First Principle Calculations of Structural, Electronic, Optical and Thermoelectric Properties of Tin (II) Oxide. Materials Research Express 2019, 6 (12), 125915.
29. Meng, X.; Wu, T.; Liu, X.; He, X.; Noda, T.; Wang, Y.; Segawa, H.; Han, L., Highly Reproducible and Efficient FASnI3 Perovskite Solar Cells Fabricated with Volatilizable Reducing Solvent. The Journal of Physical Chemistry Letters 2020, 11 (8), 2965-2971.