| 研究生: |
許家維 Chia wei Hsu |
|---|---|
| 論文名稱: |
氮化鋁鎵/氮化鎵高電子遷移率場效電晶體之表面氧化研究 |
| 指導教授: |
辛裕明
Yue ming Hsin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 電機工程學系 Department of Electrical Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 氮化鋁鎵/氮化鎵 、高電子遷移率場效電晶體 |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要針對在高阻值矽(111)基板上進行氮化鋁/氮化鋁鎵/氮化鋁/氮化鎵電晶體製作與研究,希望藉由以後製程氧化表面氮化鋁,使隨後沉積的閘極絕緣層能具有更好的品質。
本論文使用的閘極絕緣層材料為二氧化矽,而氧化表面製程採用氮氣與氧氣的混合氣體在溫度為900°C持續150秒,加上薄膜氧化層之熱退火,進而改善了金氧半接面的漏電流、降低接面缺陷密度。在經過氧化表面和薄膜氧化層之熱退火所製程之金氧半接面,其閘極漏電流為10-5 A/cm2相較於蕭特基閘極場效電體降低了約為五個數量級,且相較於未經高溫氧化製程的金氧半接面低約二個數量級;然而在接面缺陷密度的表現上,經氧化製程的金氧半接面的缺陷密度較高,估計是氧化製程導致表層氮化鋁/氮化鋁鎵接面品質劣化所致。
更進一步的將此製程技術應用至金氧半場效電晶體的製作上,並針對蕭特基閘極場效電晶體與金氧半場效電晶體的動態導通電阻的進行量測分析,結果發現,相較於蕭基特場效電晶體,金氧半場效電晶體可獲得較低的動態電阻/穩態導通電阻比值,然而在經過氧化表面後的元件,在高電場下動態特性的劣化將較未經氧化的元件嚴重,此結果亦說明當元件承受高電場時,介面缺陷密度對元件的影響甚劇。
This study focuses on the fabrication and characterization of AlN/AlGaN/AlN/GaN HEMTs on high-resistivity Si(111)substrate. The thermal oxidation is proposed before gate dielectric deposition to achieve the high quality gate dielectric and lower interface state density.
To fabricate metal-oxide-semiconductor high-electron-mobility-transistors (HEMTs), SiO2 gate dielectrics with thermal oxidation process was used in this study. The thermal oxidation process was using N2/O2 at 900 C for 150 sec before the gate dielectrics deposition. After SiO2 deposition, devices with post-deposition annealing(in N2 ambient at 1000 C)was investigated. MOS capacitor fabricated with and without thermal oxidation were investigated and compared. The MOS capacitor with thermal oxidation showed the gate leakage current of 10-5 A/cm2, which is lower than the device without thermal oxidation by twofold. However, the interface state density showed higher value in the device with thermal oxidation, the possible reason is the interface between AlN and AlGaN was damaged after thermal oxidation.
In addition, dynamic resistances of the Schottky-gate HEMTs and metal-oxide-semiconductor HEMTs were analyzed. The experimental results showed that metal-oxide-semiconductor HEMTs demonstrated lower dynamic on-resistance to steady-state on-resistance ratio. However, the device with thermal oxidation showed higher dynamic resistance to steady-state resistance ratio than the device without thermal oxidation at high electric field. This results revealed the interface state density would dominate at high electric field. Moreover, the temperature dependence of the threshold voltage and the correlation with the interface state density were discussed.
[1] L. F. Eastman and U. K. Mishra, “The toughest transistor yet GaN transistors,” IEEE Spectrum, vol. 39, pp. 28-33, May 2002.
[2] Wayne Johnson and Edwin L. Piner, “GaN HEMT Technology,” W. Johnson., Kopin Corporation.,2012.
[3] Yow-Jon Lin, “Application of the thermionic field emission model in the study of a Schottky barrier of Ni on p-GaN from current–voltage measurements,” Appl. Phys. Lett. 86, 122109, March 2005.
[4] Amro Anwar, Bahram Nabet, James Culp, and Fransisco Castro, “Effects of electron confinement on thermionic emission current in a modulation doped heterostructure,” Appl. Phys. Lett. Vol. 85, no. 5, March 1999.
[5] Yuanzheng Yue, Yue Hao, Jincheng Zhang, Jinyu Ni, Wei Mao, Qian Feng and Linjie Liu, “AlGaN/GaN MOS-HEMT With HfO2 Dielectric and Al2O3 interfacial passivation layer Grown by atomic layer deposition,” IEEE Electron Device Lett., vol. 29, no 8, pp. 838-840, Aug. 2008.
[6] Liang Pang, Yaguang Lian, Dong-Seok Kim, Jung-Hee Lee and Kyekyoon Kim, “AlGaN/GaN MOSHEMT with High-Quality Gate-SiO2 Achieved by Room-Temperature Radio Frequency Magnetron Sputtering,” IEEE Trans. Electron Devices., vol. 59, no. 10, pp. 2650-2655, Oct. 2012.
[7] T. Lalinsky´, G. Vanko, M. Vallo, E. Dobrocˇka, I. Ry´ger, and A. Vincze, “AlGaN/GaN high electron mobility transistors with nickel oxide based gates formed by high temperature oxidation,” Appl. Phys. Lett., 100, 092105, Feb. 2012.
[8] Han-Yin Liu, Bo-Yi Chou, Wei-Chou Hsu, Ching-Sung Lee, Jinn-Kong Sheu, and Chiu-Sheng Ho, “Enhanced AlGaN/GaN MOS-HEMT Performance by Using Hydroden Peroxide Oxidation Technique,” IEEE Trans. Electron Devices., vol. 60, no. 1, pp. 213-219, Jan. 2013.
[9] Masafumi Tajima, Junji Kotani, and Tamotsu Hashizume, “Effects of Surface Oxidation of AlGaN on DC Characteristics of AlGaN/GaN High-Electron-Mobility Transistors,” Jpn. J. Appl. Phys. 48 (2009) 020203.
[10] F. Medjdoub, M. Van Hove, K. Cheng, D. Marcon, M. Leys, and S. Decoutere, “Novel E-Mode GaN-on-Si MOSHEMT using a Selective Thermal Oxidation,” IEEE Electron Device Lett., vol. 31, no. 9, pp. 948-950, Sep. 2010.
[11] Naohisa Harada, Yujin Hori, Naoki Azumaishi, Kota Ohi, and Tamotsu Hashizume, “Formation of Recessed-Oxide Gate for Normally-Off AlGaN/GaN High Electron Mobility Transistors Using Selective Electrochemical Oxidation,” Appl. Phys Express, 4, (2011) 021002.
[12] Dong Seup Lee, Jinwook W. Chung, Han Wang, Xiang Gao, Shiping Guo, Patrick Fay, and Tomás Palacios, “245-GHz InAlN/GaN HEMTs With Oxygen Plasma Treatment,” IEEE Electron Device Lett., vol. 32, no. 6, pp. 755-757, June. 2011.
[13] Junichi Kashiwagi, Tetsuya Fujiwara, Minoru Akutsu, Norikazu Ito, Kentaro Chikamatsu, and Ken Nakahara, “Recessed-Gate Enhancement-Mode GaN MOSFETs with a Double-Insulator Gate Providing 10-MHz Switching Operation,” IEEE Electron Device Lett., vol. 34, no. 9, pp. 1109-1111, Sep. 2013.
[14] Yi-Che Lee, Tsung-Ting Kao, Joseph J. Merola, and Shyh-Chiang Shen, “A Remote-Oxygen-Plasma Surface Treatment Technique for lll-Nitride Heterojunction Field-Effect Transistors,” IEEE Trans. Electron Devices., vol. 61, no. 2, pp. 493-497, Feb. 2014.
[15] Y. Hori, Z. Yatabe, and T. Hashizume, “Characterization of interface states in Al2O3/AlGaN/GaN structures for improved performance of high-electron-mobility transistors,” Appl. Phys. Lett., 114, 244503, Dec. 2013.
[16] X. Sun, O. I. Saadat, K. S. Chang-Liao, T. Palacios, S. Cui, and T. P. Ma, “ Study of gate oxide traps in HfO2 AlGaN/GaN metal-oxide-semiconductor high-electron-mobility transistors by use of ac transconductance method,” Appl. Phys. Lett., 102, 103504, 2013.
[17] Y. Q. Wu, T. Shen, P. D. Ye, and G. D. Wilk, “Photo-assisted capacitance-voltage characterization of high-quality atomic-layer-deposited Al2O3/GaN metal-oxide-semiconductor structures,” Appl. Phys. Lett., 90, 143504, 2007.
[18] Rathnait D. Long and Paul C. McIntyre, “Surface Preparation and Deposited Gate Oxides for Gallium Nitride Based Metal Oxide Semiconductor Devices,” Materials 2012, 5, 1297-1335.
[19] W. uang,T. khan, and T. paul chow, “Comparison of MOS Capacitors on n- and p-Type GaN,” Journal of Electron Materials., Vol. 35, No. 4, pp. 726-732, 2006
[20] Hiroshi Kambayashi, Takehiko Nomura1, Sadahiro Kato1, Hirokazu Ueda,Akinobu Teramoto, Shigetoshi Sugawa, and Tadahiro Ohmi, “High Integrity SiO2 Gate Insulator Formed by Microwave-Excited Plasma Enhanced Chemical Vapor Deposition for AlGaN/GaN Hybrid Metal-Oxide-Semiconductor Heterojunction Field-Effect Transistor on Si Substrate,” Jpn. J. Appl. Phys. 51 (2012) 04DF03.
[21] O. Ambacher, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, W. J. Schaff, and L. F. Eastman, “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- Ga-face AlGaN/GaN heterostructures,” Appl. Phys., vol. 85, no. 6, pp.3222-333, Mar. 1999.
[22] Y. C. Kong, Y.D. Zheng, C. H. Zhou, S.L. Gu, R. Zhang, P. han, Y. Shi, R. l. Jiang, “ Two-dimensional electron gas densities in AlGaN/AlN/GaN heterostructures,” Appl. Phys. A 84, 95–98, 2006.
[23] B. Heying, “Role of threading dislocation structure on the x-ray diffraction peak widths in epitaxial GaN films”, Appl. Phys. Lett., Vol. 68, 643 (1996)
[24] Chihoko Mizue, Yujin Hori, Marcin Miczek, and Tamotsu Hashizume, “Capacitance–Voltage Characteristics of Al2O3/AlGaN/GaN Structures and State Density Distribution at Al2O3,AlGaN Interface” Jpn. J. Appl. Phys., 50 (2011) 021001.
[25] Sen Huang, Qimeng Jiang, Shu Yang, Zhikai Tang, and Kevin J. Chen, “Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges,” IEEE Electron Device Lett., vol. 34, no. 2, pp. 193-195 Feb. 2013.
[26] M. J. Anand, G. I. Ng, S. Vicknesh, S. Arulkumaran, and K. Ranjan, “Reduction of current collapse in AlGaN/GaN MISHEMT with bilayer SiN/Al2O3 dielectric gate stack,” phys. Status Solid C 10, No. 11, 1421-1325, 2013.