| 研究生: |
李賢琦 Shian-Chi Li |
|---|---|
| 論文名稱: |
以Gamma Model對台灣餘震叢集現象之研究 Research on the clustering phenomenons of aftershocks in Taiwan by gamma model |
| 指導教授: |
蔡義本
Yi-Ben Tsai |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
地球科學學院 - 地球物理研究所 Graduate Institue of Geophysics |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 伽瑪模式 、台灣 、餘震 、叢集現象 |
| 外文關鍵詞: | aftershock, gamma model, cluster, taiwan |
| 相關次數: | 點閱:3 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
根據傅玉琳(2003)的研究,台灣地區所發生規模3~4的小地震,其時間分布模式可利用Gamma Model加以解釋其特性
本研究採用中央氣象局地震目錄中1973年1月到2003年6月規模3.0≦M≦4.0的地震資料,將台灣劃分為2000個0.1°×0.1°的小區域(範圍為23°N~26°N,119°E~123°E),採用Rundle等(2003)所提出的Pattern Informatics Method,對台灣地區6個規模6.0以上的大地震取其餘震分布區域,再利用Gamma Model的參數特性分析6個餘震分布區域30年來所發生小地震在時間上分布的變化情形,並檢驗大地震之後所發生的餘震在時間上是否有叢集現象及其叢集的特性。
After Fu''s research(2003),the characteristics of time distribution of small magnitude(3.0≦M≦4.0)earthquakes can be explained by gamma model.
The earthquake catalog of CWB,Taiwan is used in this paper,from 1973,Jan. to 2003,Jun.We divid the range of Taiwan(23°N~26°N,119°E~123°E)into 2000 small squares with 0.1°×0.1°.We chosse 6 big mainshocks with magnitudes greater than 6.0 from the CWB catalog.Then we calculate the changes of the number of earthquakes between one year after the mainshocks and five years before the mainshocks,and if the changes were greater than the standard value,the square will be taken as a part of the aftershock range.We calculated the parameters of gamma model of each mainshocks with several different time interval in 30 years,and then to check if any clustering phenomenons happened after the mainshocks.
1. Gutenberg,B. and Richter,C.F.(1944), Frequency of Earthquake in California,Bull. Seism. Soc. Am,34,185-188.
2. James,S.C. and David,B. (1976), Comment on ”Statistical Analysis of Microearthquake Activity near San Andreas Geophysical Observatory, Hollister, California” by Udias and Rice,1975,Bull. Seism. Soc. Am,66,997-1016.
3. Parvez,I.A. and Ram,A. (1999), Probabilistic Assessment of Earth -quake Hazards in the Indian Subcontinent,Pure. Appl. Geophys, 34,185-188.
4. Rundle,J. and Turcotte,D. (2003),Statistical Physics Approach to Understanding the Multiscale Dynamics of Earthquake Fault System,Reviews of Geophys, 41,4.
5. Shimazaki,K. and Nakata,T. (1980),Time-predictable Recurrence Model for Large Earthquakes,Geophys. Res. Lett, 7,279-282.
6. Udias,A. and Rice,J. (1975), Statistical Analysis of Micro -earthquake Activity near San Andreas Geophysical Observatory, Hollister, California,Pure. Appl. Geophys, 65,809-827.
7. Utsu,T. (1984), Estimation of Parameters for Recurrence Models of Earthquakes,Bull. Earthq. Res. Inst, 59,53-66.
8. Utsu,T. (2002), Statistical Features of Seismicity,International Handbook of Earthquake and Engineering Seismology,vol.81, 719-732.
9. 傅玉琳,2003。台灣小規模地震再發統計模式參數之研究。國立中央大學地球物理研究所碩士論文。