跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林哲生
Jer-sheng Lin
論文名稱: 應用於生理訊號偵測之截波穩定型類比前端電路之設計
A Design of Analog Front-End Circuit Based on Chopper Stabilization Technique for Bio-Signal Detection
指導教授: 薛木添
Muh-tian Shiue
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 106
中文關鍵詞: 生醫晶片類比前端電路截波穩定技術
外文關鍵詞: integrated circuit of bio-medical signal, analog front end circuit, chopper stabilization technique
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年來隨著科技的進步、無線傳輸技術的成熟與網際網路的普及性,生醫感測技術結合無線網路在未來的醫療系統發展上將會受到重視,尤其是個人居家以及普通病房環境中的監控需求,因此,考量到便利性,我們希望病人可以攜帶輕巧的監控裝置並長時間的監控生理狀況。由於電極端接收的生理訊號極為微弱,為了完整地記錄生理訊號,其電路設計上朝向低雜訊、高解析度、低功率消耗等特點邁進。
    本篇主旨為應用於生理訊號偵測系統之全差動對稱式類比前端電路設計,是針對微弱的心電(Electrocardiography, ECG)訊號作記錄。為了將低頻雜訊的成份濾除,本電路的放大級採用截波穩定技術作為降低雜訊的方法;再來,為了消除輸入半細胞電位的影響,我們在系統第一級的部分加入高通濾波器;以上所使用兩個方法最後,其目的都是為了提高訊號的解析度;最後,為了降低整體電路的功率消耗,所以將放大器的輸入級的場效電晶體操作於弱反轉區,目的是為了利用小電流以得到大的轉導值。以上說明了我們是如何達到低雜訊、高解析度、低功率等特點的。
    本文所提出的類比前端電路系統包含高通濾波器、截波穩定型帶通濾波器、二階低通濾波器、偏壓電路與時脈產生器。在電路實現上,在有效頻寬約1.5KHz 下、直流增益為40dB、總等效輸入相關雜訊電壓約為12.61μVrms、其有效位元數達到11位元的解析度。使用台積電0.18 μm 標準CMOS 1P6M 製程完成,其晶片面積為1.17048 × 898 mm2。在1.8 V 電源供應下,總功率消耗約為6.23 μW。


    Because of the advanced technique and the development of health awareness in recent years, the combination of the biomedical sensing technique and wireless network become more popular, especially for elder care and video games. To make the products more convenient for users, one of our goals is to make the product portable, and the other is to prolong the battery Life. Due to the biomedical signals are very sensitive to the noise and the offset, the design of cancelling non-ideal low frequency effects is indispensable.
    In this thesis, we present a fully differential analog front- end circuit for bio-signal detection system that can be used to record the electrocadiography, ECG, signal. To make the output signal offer a higher resolution, we employ the high pass filter in the first stage to eliminate the half-cell voltage, and chopper stabilization technique is employed in the amplification stage to eliminate the non-ideal low frequency effects, such as flicker noise and DC offset voltage. In order to decrease the power dissipation of the system, the input stages of the amplifier are designed to operate in weak inversion region.
    The analog front-end system designed includes a high pass filter, a chopper stabilization amplifier, a second order low pass filter, a bias circuit and a clock generator. Our AFE circuit design achieves 130dB CMRR, 1.89-μV_rms input refer noise in the range of 0.1 to 150 Hz and 11bits resolution, while consuming 11.56μW. And the AFE system is implemented by TSMC with 0.18-μm 1P6M CMOS process. The superficial measure of the chip is 1.17048×0.898 〖mm〗^2.

    摘要 II ABSTRACT III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 - 1 - 1.1 背景 - 1 - 1.2 研究動機 - 2 - 1.3 論文架構 - 3 - 第二章 生理訊號偵測之考量 - 5 - 2.1 各種常見的生理訊號 - 5 - 2.2 各種雜訊源 - 6 - 2.2.1 熱雜訊 - 7 - 2.2.2 閃爍雜訊 - 9 - 2.2.3 環境雜訊 - 11 - 2.3 輸入端之直流偏移電壓(INPUT DC OFFSET VOLTAGE) - 12 - 2.4 低功率之要求 - 14 - 第三章 生理訊號偵測之設計 - 15 - 3.1 低雜訊之電路設計 - 15 - 3.1.1 自動歸零技術 - 16 - 3.1.2 截波穩定技術 - 19 - 3.1.3 低雜訊電路之比較 - 25 - 3.2 降低環境雜訊之方法 - 26 - 3.2.1 傳統式儀表放大器 - 27 - 3.2.2 全差動電路架構 - 28 - 3.3 輸入直流偏移電壓之消去方法 - 29 - 3.3.1 交流耦合技術 - 29 - 3.3.2 積分回授技術 - 30 - 3.3.3 應用在截波穩定技術之解決方法 - 31 - 3.4 低功號的設計方法 - 34 - 3.4.1 弱反轉層 - 34 - 第四章 截波穩定型類比前端電路之架構 - 39 - 4.1 系統規格 - 39 - 4.2 系統架構 - 42 - 4.3 截波穩定技術系統之子系統之電路架構 - 45 - 4.3.1 高通濾波器 - 46 - 4.3.2 帶通濾波器 - 47 - 4.3.3 低通濾波器 - 51 - 4.4 子系統內所使用的電路架構 - 54 - 4.4.1 電流鏡轉導放大器 - 54 - 4.4.2 共模回授電路架構 - 58 - 4.4.3 虛擬電阻 - 60 - 4.4.4 電容切換式電阻 - 61 - 4.4.5 調變器 - 62 - 4.4.6 偏壓電路 - 65 - 4.4.7 非重疊時脈產生器 - 66 - 第五章 晶片模擬、佈局與量測 - 67 - 5.1 晶片模擬結果 - 67 - 5.1.1 高通濾波器 - 67 - 5.1.2 帶通濾波器 - 68 - 5.1.3 低通濾波器 - 75 - 5.1.4 截波穩定技術系統 - 79 - 5.2 晶片佈局 - 86 - 第六章 結論與未來展望 - 89 - 6.1 結論 - 89 - 6.2 未來展望 - 90 - 參考文獻 - 91 -

    [1] J. G. Webster, “Medical Instrumentation Application and Design,” Canada: John Wiley & Sons., 1998.

    [2] B. Razavi, “Design of analog CMOS integrated circuits,” New York: McGraw Hill, 2001

    [3] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, “Analysis and design of analog integrated circuits,” New York: John Wiley & Sons, Inc., 2001.

    [4] T.C. Carusone, D.A. Johns, K.W. Martin, “Analog Integrated Circuit Design,” New York: John Wiley & Sons, Inc., 2011

    [5] R. J. Baker, “CMOS circuit design, layout, and simulation,” NJ: Wiley IEEE Press,2005.

    [6] T.M. Seese, H. Harasaki, G.M. Saidel, and C.R. Davies “Characterization of tissue morphology, angiogenesis, and temperature in the adaptive response of muscle tissue to chronic heating” Lab. Invest., vol. 78,no. 12, pp 1553-1562, 1998.

    [7] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–65, Jun. 2003.

    [8] C.C. ENZ and G.C. Temes, “Circuit techniques for reducing the effects of op-ampimperfections: autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 1584-1614, Nov. 1996.

    [9] A. Bakker and J. Huijsing, “High-accuracy CMOS smart temperature sensors,”
    Boston: Kluwer Academic Publisher, 2000.

    [10] http://cc.ee.ntu.edu.tw/~thlin/SensorIC_LowNoiseTech.pdf

    [11] R. R. Harrison and C. Charles, “A low-power low-noise CMOS amplifier for neural recording applications,” IEEE J. Solid-State Circuits, vol. 38, no. 6, pp. 958–65, Jun. 2003.

    [12] A. Harb and M. Sawan, “New low-power low-voltage high-CMRR CMOS instrumentation amplifier,” IEEE International Conference Electronics, Circuits and System, vol. 1,pp. 517-520, Sep. 1999.

    [13] B. Gosselin, A. E. Ayoub, and M. Sawan, “A low-power bioamplifier with a new
    active DC rejection scheme,” IEEE Intl. Symp. Circ. Syst., pp. 21-24, May 2006.

    [14] T. Denison, K. Consoer, W. santa, A. T Avestruz, J. Coolry and A. Kelly, “A 2 μW 100 nV/rtHz Chopper-Stabilized Instrumentation Amplifier for Chronic Measurement of Neural Field Potentials,” IEEE Solid-State Circuits, vol.42, no.12, pp. 2934-2945, Dec. 2007.

    [15] R. F, Yazicioglu, P. Merken, R. Puers, and C. V. Hoof, “A 60 μW60 nV/ Hz Readout Front-End for Portable Biopotential Acquisition Systems,” IEEE J. Solid-State Circuits, vol. 42, no. 5, pp.1100-1110, May. 2007.

    [16] R. F, Yazicioglu, P. Merken, R. Puers, and C. V. Hoof, “A 200 μW Eight-Channel EEG Acquisition ASIC for Ambulatory EEG Systems,” IEEE J. Solid-State Circuits, vol. 43, no. 12, pp. 3025-3038, Dec. 2008.

    [17] M. T. Salam, M. Sawan and D. K. Nguyen, “A Novel Low-Power-Implantable Epileptic Seizure-Onset Detector,” IEEE Transactions on biomedical circuits and systems, vol.5, no.6, pp. 568-578, Dec. 2011.

    [18] Y. W. Tseng, Y. C. Ho, S.T. Kao, and C.C. Su, “A 0.09 μW Low Power Front-End Biopotential Amplifier for Biosignal Recording,” IEEE Transactions on biomedical circuits and systems, vol.6, no.5, pp. 508-516, Oct. 2012.

    [19] Phillip E. Allen, Douglas R. Holberg, “CMOS Analog Circuit Design,” Oxford University Press, 2002

    [20] Huelsman, Lawrence P, ‘”Active and passive analog filter design : an introduction” New York : McGraw-Hill, c1993

    [21] Shiue, M.-T. ; Yao, K.-W. ; Gong, C.-S.A., ” Tunable high resistance voltage-controlled pseudo-resistor with wide input voltage swing capability,” ELECTRONICS LETTERS Vol. 47 No. 6, 2011

    [22] 林威志” 應用於生理訊號量測系統之截波穩定型類比前端電路”中央大學, 2009.

    [23] Qinwen Fan, Fabio Sebastiano†, Han Huijsing and Kofi Makinwa, “A 2.1 μW Area-Efficient Capacitively-Coupled Chopper Instrumentation Amplifier for ECG Applications in 65 nm CMOS,” IEEE Asian Solid-State Circuits Conference, Nov 2010.

    [24] Xiao Yang1, Qi Cheng, Li-fei Lin , Wei-wei Huang , Chao-dong Ling , “Design of Low Power Low Noise Amplifier for Portable Electrocardiogram Recording System Applications,” Anti-Counterfeiting, Security and Identification (ASID), 2011.

    [25] Xiaofei Pu, Lei Wan, Yun Sheng, Patrick Chiang, Yajie Qin1, Zhiliang Hong, “A Wireless 8-Channel ECG Biopotential Acquisition System for Dry Electrodes,” Radio-Frequency Integration Technology (RFIT), 2012

    [26] Jinghao Feng, Na Yan, Hao Min, “A Low-power Low-noise Amplifier for EEGIECG Signal Recording Applications,” ASIC (ASICON), 2012

    [27] M. S. J. Steyaert, W. M. C. Sansen, and C. Zhongyuan, “A micropower low-noisemonolithic instrumentation amplifier for medical purposes,” IEEE J. Solid-State Circ.,vol. sc-22, no. 6, pp. 1163-1168, Dec. 1987

    QR CODE
    :::