| 研究生: |
沈佳興 Chia-Hsing Shen |
|---|---|
| 論文名稱: |
從五連方拼圖遊戲中探討不同工具對國小學童空間能力的影響 The Effect of Diverse Inputs on Child''s Spatial Ability in Pentomino Games |
| 指導教授: |
楊接期
Jie-Chi Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 網路學習科技研究所 Graduate Institute of Network Learning Technology |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 70 |
| 中文關鍵詞: | 遊戲式學習 、動作分析 、空間能力 、五連方 |
| 外文關鍵詞: | Motion Analysis, Spatial Ability, Pentomino, Digital Game-Based Learning |
| 相關次數: | 點閱:9 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
「發現法」與「策略法」係現今思考教育最成功的兩種方法。Piaget認知發展理論表示,孩童學習的方式是藉具體的物體來建構空間概念,透過知覺學習過程作發展。益智遊戲能激發孩童整個腦力思考,從玩的過程中尋找問題答案,潛移默化下養成他們思索問題的能力。
故本研究以五連方拼圖為基礎,將方格拼圖、動物拼圖、組合拼圖等元素融入五連方益智拼圖遊戲環境中。透過遊戲式學習,讓孩童浸泡在幾何探索世界裡,藉此提升他們的空間能力。實驗目的在於探究不同工具和圖形特徵對孩童空間學習是否有影響,並比較男女空間能力的差異。實驗最後,以問卷方式了解孩童對五連方遊戲的整體觀感,並藉著實地觀察,貼近了解他們玩拼圖的途徑。
從本實驗的結果得知,使用不同學習模式作五連方益智拼圖,對孩童的空間學習皆有助益。若是用Wii搖桿玩拼圖,更可以給孩童有較多感官思考的經驗。從訪談中,也證實五連方益智拼圖遊戲對孩童的身心發展有益處,還能給他們更多空間表現自我。
Discovery and Tactic are two most successful methods on today''s thinking education. Piaget''s cognitive-developmental theory states that the learning methods of children are to construct spatial ideas by concrete objects and evolve from perceptual learning. Puzzles aroused child''s whole brain thinking in quest of answers during the play. Change and influence their learning motivation and resolving ability unobtrusively and imperceptibly. In our study, we took the funny check, animal and combination elements into pentomino-based puzzles. Digital Game-Based Learning enhanced the child''s spatial ability in the geometric world. Our goals are to seek out the effects of diverse inputs and graphic characteristics on child''s spatial ability, as well as the difference of spatial ability between males and females. The pentomino game and questionnaire were experimented live, which render us how children played and became acquainted. The experimental results demonstrate the boost to child''s spatial ability through diverse learning methods in pentomino games. The Wii remote affirmatively renders children more experiences in sensory thinking. The interview justified the pentomino game is helpful to children in (body and) mind. It also provides more rooms for children to show themselves.
中文部分:
李平(譯)(1997)。經營多元智慧-展開以學生為中心的教學。台北:遠流。
杞昭安(1992)。 國小兒童圖形認知之研究。特殊教育學報,7,219-265。
林逸農(2006)。五連方幾何積木課程對國小學童視覺空間能力的影響。國立台灣科技大學技術及職業教育研究所碩士論文。全國博碩士論文資訊網,94NTUS5677003。
林逸農、鄭海蓮、陳世玉(2007)。互動式多媒體空間推理遊戲教材之設計與發展-以「五連方」幾何圖形為例。第二屆數位內容管理與應用學術研討會。
洪蘭(譯)(2000)。腦內乾坤 :男女有別,其來有自。台北市:遠流出版社。
胡守仁(譯)(2005)。拼圖拼字拼數學。台北:遠流。
張春興(1994)。教育心理學。台北市:東華書局。
陳淑美(1990)。比西量表。諮商與輔導,56,23-26。
陳榮華、陳心怡(1997)。魏氏成人智力量表第三版(WAIS-III)。台北:中國科學行為社。
蔡子瑋(譯)(2002)。視覺思考的經驗(第二版)。台北市:六合出版社。
蔣家唐(1995)。視覺空間認知能力向度分析暨數理-語文資優學生視覺空間認知能力差異研究。行政院國家科學委員會專題研究計畫成果報告。
鄭海蓮、林逸農(2006)。國小男女學童在五連方幾何積木視覺空間能力測驗表現之研究。第七屆海峽兩岸心理與教育測驗學術研討會。
戴文雄(1998)。不同正增強回饋形式電腦輔助學習系統對不同認知形態與空間能力高工學生機械製圖學習成效的研究。行政院國家科學委員會專題研究計畫成果報告。
英文部分:
Abrohms, A. (1992). Problem solving with pentominoes. Illinois: Learning Resources.
Ayres, A. J. (1972). Sensory integration and learning disorders. Los Angeles: Western Psychological Services.
Dunser, A., Steinbug, K., Kaufmann, H., & Gluck, J. (2006). Virtual and augmented reality as spatial ability training tools. In Proceedings of the 7th ACM SIGCHI New Zealand Chapter''s International Conference on Computer-Human Interaction: Design Centered HCI, 158, 125-132.
French, J. W. (1951). The description of aptitude and achievement tests in terms of rotated factors. Chicago: University of Chicago Press.
Gardner, H. (1983). Frames of mind: The theory of multiple intelligence. New York: Basic Books.
Guilford, J. P. (1988). Some changes in the structure of intellect model. Educational and Psychological Measurement, 48(1), 1-4.
Hegarty, M., & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence, 32(2), 175-191.
Hirschhorn, D. (2001). Try it! pentominoes. illinois: Learning resources. Intelligence, 32(2), 175-191.
Jones, G. (1994). The puzzling world of tangrams and pentominoes. Ontario: Exclusive Educational Products.
Jones, S. J., & Burnett, G. E. (2007). Spatial skills and navigation of source code. In Proceedings of the 12th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education, 39(3), 231-235.
Keehner, M. M., Tendick, F., Meng, M. V., Anwar, H. P., Hegarty, M., Stoller, M. L., et al. (2004). Spatial ability, experience, and skill in laparoscopic surgery. The American Journal of Surgery, 188(1), 71-75.
Kelley, T. L. (1928). Crossroads in the mind of man. Stanford. CA: Stanford University Press.
Kephart, N. (1960). The slow learner in the classroom. Columbus, OH: Charles E. Merill.
Lave, J., & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York: Cambridge University Press.
Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use. International Journal of Human-Computer Interaction, 7(1), 57-78.
McGee, M. G. Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86(5), 889-918.
McKim, R. H. (1980). Experiences in visual thinking (2nd ed.). Monterey, CA: Brooks/Cole Publishing.
Menchaca-Brandan, M. A., Liu, A. M., Oman, C. M., & Natapoff, A. (2007). Influence of perspective-taking and mental rotation abilities in space teleoperation. Poster session presented at Proceedings of the ACM/IEEE International Conference on Human-Robot Interaction, Arlington, Virginia, USA .
Olkun, S. (2003). Comparing computer versus concrete manipulatives in learning 2D geometry. Journal of Computers in Mathematics and Science Teaching, 22(1), 43-56.
Piaget, J. (1972). The child and reality: Problems of genetic psychology. New York: Grossman.
Pike, C. (2002). Exploring the conceptual space of LEGO: Teaching and learning the psychology of creativity. Psychology Learning and Teaching, 2(2), 87-94.
Pilgrim, C. J. (2007). The influence of spatial ability on the use of web sitemaps. In Proceedings of the 2007 Conference of the Computer-Human Interaction Special Interest Group (CHISIG) of Australia on Computer-Human Interaction: Design: Activities, Artifacts and Environments, 251, 77-82.
Rafi, A., Anuar, K., Samad, A., Hayati, M., & Mahadzir, M. (2005). Improving spatial ability using a web-based virtual environment (WbVE). Automation in Construction, 14(6), 707-715.
Rilea, S. L., Roskos-Ewoldsen, B., & Boles, D. (2004). Sex differences in spatial ability: A lateralization of function approach. Brain and Cognition, 56(3), 332-343.
Sedig, K. (2008). From play to thoughtful learning: A design strategy to engage children with mathematical representations. The Journal of Computers in Mathematics and Science Teaching, 27(1), 65-101.
Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(972), 701-703.
Spearman, C. (1927). The nature of “intelligence” and the principles of cognition (2nd ed.). London: Macmillan.
Sternberg, R. J. (1984). Toward a triarchic theory of human intelligence. Behavioral and Brain Sciences, 7(2), 269-315.
Sternberg, R. J. (1986). Intelligence applied: Understanding and increasing your intellectual skills. San Diego: Harcourt Brace Jovanovich.
Tartre, L. (1990). Spatial skills, gender, and mathematics. New York: Teachers College Press.
Thurstone, L. L. (1938). Primary mental abilities. Chicago: University of Chicago Press.
Thurstone, L., & Jeffrey, T. (1976). Perceptual speed Industrial Relations Center.
Vigil, P. J. (1988). Oline retrieval: Analysis and strategy. New York: John Wiley & Sons.
Wechsler, D. (1958). The measurement and appraisal of adult intelligence (4th ed.). Baltimore, M.D.: Williams and Wilkins.
Witkin, H. A., Moore, C. A., Goodenough, D. R., & Cox, P. W. (1977). Field-dependent and field-independent cognitive styles and their educational implications. Review of Educational Research, 47, 1-64.