| 研究生: |
林哲玄 Jhe-Syuan Lin |
|---|---|
| 論文名稱: |
薄型化光展量疊加太陽能集光器 Design of a Thin Etendue-Cascading Solar Concentrator |
| 指導教授: |
梁肇文
Chao-Wen Liang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 80 |
| 中文關鍵詞: | 光展量 、太陽能集光器 |
| 外文關鍵詞: | Solar Concentrator, Etendue |
| 相關次數: | 點閱:15 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Ⅲ-Ⅴ族太陽能電池常需要高倍率聚光鏡組,來降低其成本與提升轉換效率,而良好的太陽能集光器系統除了高倍率集光比之外效率也是很重要的因素考量之一。
本論文討論一具有高聚光倍率、薄型化和光展量疊加特點的太陽能集光器設計,此設計可以使太陽能集光器系統的成本大大降低,不僅僅簡化了系統alignment上的難度,也對整個系統的體積降低許多。
本設計描述一種結合折射式與反射式的太陽能集光器設計,利用了折射式的透鏡聚焦方法讓光線可以以最少的損耗大量進入系統中,再利用反射式離軸傳遞光線與Etendue光學概念,將各個透鏡進入的光線做光展量的疊加與離軸的傳遞,最後再進入到太陽能電池上。此設計另外有個特點就是薄型化,以目前學術上薄型化設計厚薄比約只到0.25的比值,而利用透鏡聚焦的設計更是遠大於1以上,使得整體體積相當龐大,而本設計的厚薄比約可達到0.19,而整體最高效率可達到66.68%,可接收角度為±0.9度。
Ⅲ-Ⅴmulti-junction solar cells often need solar concentrators with high concentration ratio to decrease the cost and to increase the transforming efficiency. Besides high concentration ratio, a solar concentrator should also have high efficiency.
This Master thesis discusses about a solar concentrator design which has key advantages of having high concentration ratio, thin design and Etendue-cascading features. This design can reduce cost significantly, simplify alignment effort and decrease the overall system volume.
This Master thesis describes a novel design that combines the concept of both refractive and reflective concentrator type. The light is first focused into our system with minimal loss through high-NA lenses, and then off-axis-relayed to the solar cell through the reflective surfaces. The Etendue cascading feature of this design cascades light collected by all refractive lenses, and focuses it onto the solar cell.
Another key advantage of this design is its thin feature. The smallest aspect ratio reported so far is only 0.25, and that of refractive design is much larger than 1, which makes the overall system large.
In contrast, our design can result in an aspect ratio of 0.19, efficiency as high as 66.68%, and acceptance angle of ±0.9 degree.
〔1〕 黃惠良、曾百亨等編著,太陽電池,五南出版社,台灣,2008。
〔2〕 Blair L. Unger, ”Dimpled Planar Lightguide Solar Concentrators”, University of Rochester, Doctor of Philosophy, 2010.
〔3〕 Ralf Leutz, Akio Suzuki, Nonimaging Fresnel Lenses : Design and Performance of Solar Concentrators, Springer Series in Optical Sciences, July 2001.
〔4〕 Roland Winston, et al., Nonimaging Optics, 1 edition, Academic Press, January 2005.
〔5〕 Franc Grum, C. James Bartleson, Optical Radiation Measurement series, Vol. 2, Academic Pr 1980.
〔6〕 James M. Palmer, Barbara G. Grant, The Art of Radiometry, Vol. 1, SPIE Publications, December 2009.
〔7〕 Abengoa Solar, 21 May 2012, http://www.abengoasolar.com/.
〔8〕 Covalent Solar, 21 May 2012, http://www.covalentsolar.com/.
〔9〕 Prism Solar, 21 May 2012, http://www.prismsolar.com/.
〔10〕 Solaria, 21 May 2012, http://www.solaria.com/.
〔11〕 Stellaris, 21 May 2012, http://www.stellaris-corp.com/.
〔12〕 WS-Energia, 21 May 2012, http://www.ws-energia.com/np4EN/home.html.
〔13〕 Zytech Solar, 21 May 2012, http://www.zytech.es/index.asp.
〔14〕 Absolicon Solar Concentrator, 21 May 2012, http://www.absolicon.com/.
〔15〕 Cpower solar, 21 May 2012, http://www.cpower.it/.
〔16〕 Entech Solar, 21 May 2012, http://www.entechsolar.com/index.htm.
〔17〕 Skyline Solar, 21 May 2012, http://www.skyline-solar.com/.
〔18〕 Allen Barnett, et al., “Very high efficiency solar cell modules”, Progress in Photovoltaics, Vol. 17, pp. 75-83, January 2009.
〔19〕 James D. McCambridge, et al., “Compact spectrum splitting photovoltaic module with high efficiency”, Progress in Photovoltaics, Vol. 19, pp. 352-360, May 2011.
〔20〕 Ralf Leutz, et al., “ Shaped nonimaging Fresnel lenses”, Journal of Optics A: Pure and Applied Optics, Vol. 2, Issue 2, pp. 112-116, March 2000.
〔21〕 Kim, Byungwook, et al., “Elimination of flux loss by optimizing the groove angle in modified Fresnel lens to increase illuminance uniformity, color uniformity and flux efficiency in LED illumination”, Optics Express, Vol. 17, Issue 20, pp. 17916-17927, 2009.
〔22〕 Guascor Foton, 21 May 2012, http://www.fotonhc.com/.
〔23〕 Arima Eco Energy, 21 May 2012, http://www.arimaeco.com/.
〔24〕 Amonix, 21 May 2012, http://amonix.com/.
〔25〕 Opel Solar, 21 May 2012, http://www.opelinc.com/.
〔26〕 Concentrix Solar, 21 May 2012, http://www.soitec.com/en/solar-energy/.
〔27〕 AEST, 21 May 2012, http://www.aest.it/en/products.html.
〔28〕 EVERPHOTON, 21 May 2012, http://www.everphoton.com/overview.html.
〔29〕 Greenandgoldenergy, 21 May 2012, http://www.greenandgoldenergy.com.au/.
〔30〕 Pyron Solar, 21 May 2012, http://www.pyronsolar.com/.
〔31〕 Emcore,21May2012,http://emcore.com/solar_photovoltaics/terrestrial_concentrator_photovoltaic_arrays.
〔32〕 Benitez, Pablo, Minano Juan C, et al., “High performance Fresnel-based photovoltaic concentrator”, Optics Express, Vol. 18, Issue S1, pp. A25-A40, 2010.
〔33〕 Benitez, Pablo, Minano Juan C, et al., “Optical concentrator, especially for solar photovoltaics”, U.S. Patent, Appl. No. 20080223443, March 2008.
〔34〕 Victoria Marta, et al., “Comparative analysis of different secondary optical elements for aspheric primary lenses”, Optics Express, Vol. 17, Issue 8, pp. 6487-6492, 2009.
〔35〕 M. Buljan, P. Benitez, et al. “Improving performances of Fresnel CPV systems:Fresnel-RXI Kohler concentrator”, 25th European Photovoltaic Solar Energy Conference and Exhibition/5th World Conference on Photovoltaic Energy Conversion, Valencia, Spain, September 2010.
〔36〕 Ning Xiaohui, O’Gallagher Joseph, & Winston Roland, “Optics of two-stage photovoltaic concentrators with dielectric second stages”, Applied Optics, Vol. 26, Issue 7, pp.1207-1212, 1987.
〔37〕 Natalia Ostroumov, Jeffrey M. Gordon, & Daniel Feuermann, “Panorama of dual-mirror aplanats for maximum concentration”, Applied Optics, Vol. 48, Issue 26, pp.4926-4931, 2009.
〔38〕 Pablo Benitez, et al., “Optical concentrator, especially for solar photovoltaics”, U.S. Patent, Appl. No. 12075830, 14 March 2008.
〔39〕 Aleksandra Cvetkovic, et al., “The free form XR photovoltaic concentrator: a high performance SMS3D design”, Proceedings of SPIE, Vol. 7043, August 2008.
〔40〕 Zamora P., Cvetkovic A., et al. “Advanced PV concentrators”, Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE, pp. 000929, Philadelphia, PA, 2010.
〔41〕 Winston Roland, Gordon Jeffrey M, “Planar concentrators near the etendue limit”, Optics Letters, Vol. 30, Issue 19, pp. 2617-2619, 2005.
〔42〕 Gordon Jeffrey M, Feuermann Daniel, & Young Pete, “Unfolded aplanats for high-concentration photovoltaics”, Optics Letters, Vol. 33, Issue 10, pp.1114-1116, 2008.
〔43〕 Nancy Hartsoch, “Concentrator Photovoltaics for Scalable, Low Cost,Renewable Solar Energy Production”, SolFocus, Stanford University, 21 May 2009.
〔44〕 Gordon Jeffrey M, “Aplanatic optics for solar concentration”, Optics Express, Vol. 18, Issue S1, pp. A41-A52, 2010.
〔45〕 P. Benitez, et al., “High-Concentration Mirror-Based Kohler Integrating System for Tandem Solar Cells”, Photovoltaic Energy Conversion, Conference Record of the 2006 IEEE 4th World Conference on, pp. 690-693, Waikoloa, HI, May 2006.
〔46〕 Roland Winston, “Matrix formulation of Kohler integrating system and coupled non-imaging light concentrator” U.S. Patent, Appl. No. 12116850, 7 May 2008.
〔47〕 Juan C. Minano, Juan C. Gonźlez, & Pablo Benitez , “A high-gain, compact, nonimaging concentrator: RXI”, Applied Optics, Vol. 34, Issue 34, pp. 7850-7856, 1995.
〔48〕 Winston Roland, Zhang Weiya, “Novel aplanatic designs”, Optics Letters, Vol. 34, Issue 19, pp.3018-3019, 2009.
〔49〕 Solarsystems, 22 May 2012, http://solarsystems.com.au/.
〔50〕 Coolearth, 22 May 2012, http://www.coolearthsolar.com/.
〔51〕 Solfocus, 22 May 2012, http://www.solfocus.com/en/index.php.
〔52〕 Greenfieldsolar, 22 May 2012, http://www.greenfieldsolar.com/.
〔53〕 Zenithsolar, 22 May 2012, http://www.zenithsolar.com/.
〔54〕 Tsoi Shufen, et al., “Patterned dye structures limit reabsorption in luminescent solar concentrators”, Optics Express, Vol. 18, Issue S4, pp. A536-A43, 2010.
〔55〕 S.J. Gallagher, B.Norton, P.C. Eames, “Quantum dot solar concentrators: Electrical conversion efficiencies and comparative concentrating factors of fabricated devices”, Solar Energy, Vol. 81, Issue 6, pp. 813-821, July 2007.
〔56〕 John Paul Morgan, et al., “Light-guide solar panel and method of fabrication thereof”, U.S. Patent, Appl. No. 20080271776, November 2008.
〔57〕 John Paul Morgan, et al., “Light-guide solar panel and method of fabrication thereof”, U.S. Patent, Appl. No. 13007910,17 January 2011.
〔58〕 Duncan T. Moore, Greg R. Schmidt, & Blair L. Unger, “Stepped light collection and concentration system, components thereof, and methods”, U.S. Patent, Appl. No. 12490432, 24 June 2011.